Suppr超能文献

核糖体负载、密码子偏爱与蛋白质丰度

On ribosome load, codon bias and protein abundance.

机构信息

Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.

出版信息

PLoS One. 2012;7(11):e48542. doi: 10.1371/journal.pone.0048542. Epub 2012 Nov 7.

Abstract

Different codons encoding the same amino acid are not used equally in protein-coding sequences. In bacteria, there is a bias towards codons with high translation rates. This bias is most pronounced in highly expressed proteins, but a recent study of synthetic GFP-coding sequences did not find a correlation between codon usage and GFP expression, suggesting that such correlation in natural sequences is not a simple property of translational mechanisms. Here, we investigate the effect of evolutionary forces on codon usage. The relation between codon bias and protein abundance is quantitatively analyzed based on the hypothesis that codon bias evolved to ensure the efficient usage of ribosomes, a precious commodity for fast growing cells. An explicit fitness landscape is formulated based on bacterial growth laws to relate protein abundance and ribosomal load. The model leads to a quantitative relation between codon bias and protein abundance, which accounts for a substantial part of the observed bias for E. coli. Moreover, by providing an evolutionary link, the ribosome load model resolves the apparent conflict between the observed relation of protein abundance and codon bias in natural sequences and the lack of such dependence in a synthetic gfp library. Finally, we show that the relation between codon usage and protein abundance can be used to predict protein abundance from genomic sequence data alone without adjustable parameters.

摘要

不同的密码子编码相同的氨基酸在蛋白质编码序列中使用并不平等。在细菌中,存在着对高翻译速率密码子的偏好。这种偏好在高表达蛋白中最为明显,但最近对合成 GFP 编码序列的研究并没有发现密码子使用与 GFP 表达之间的相关性,这表明在自然序列中这种相关性不是翻译机制的简单特性。在这里,我们研究进化力量对密码子使用的影响。基于密码子偏好是为了确保核糖体有效利用这一假设,对密码子偏好与蛋白质丰度的关系进行了定量分析,核糖体是快速生长细胞的宝贵资源。根据细菌生长规律,建立了一个明确的适应度景观,将蛋白质丰度和核糖体负荷联系起来。该模型得出了密码子偏好与蛋白质丰度之间的定量关系,该关系解释了大肠杆菌中观察到的偏好的很大一部分。此外,通过提供一种进化联系,核糖体负荷模型解决了在自然序列中观察到的蛋白质丰度和密码子偏好之间的明显冲突,以及在合成 gfp 文库中缺乏这种依赖性的问题。最后,我们表明,密码子使用与蛋白质丰度之间的关系可以用来仅从基因组序列数据预测蛋白质丰度,而无需可调参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4972/3492488/48103e78b10e/pone.0048542.g001.jpg

相似文献

1
On ribosome load, codon bias and protein abundance.
PLoS One. 2012;7(11):e48542. doi: 10.1371/journal.pone.0048542. Epub 2012 Nov 7.
2
Codon usage of highly expressed genes affects proteome-wide translation efficiency.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4940-E4949. doi: 10.1073/pnas.1719375115. Epub 2018 May 7.
3
Codon Bias Patterns of E. coli's Interacting Proteins.
PLoS One. 2015 Nov 13;10(11):e0142127. doi: 10.1371/journal.pone.0142127. eCollection 2015.
4
Effect of codon adaptation on codon-level and gene-level translation efficiency in vivo.
BMC Genomics. 2014 Dec 16;15(1):1115. doi: 10.1186/1471-2164-15-1115.
5
Codon optimality controls differential mRNA translation during amino acid starvation.
RNA. 2016 Nov;22(11):1719-1727. doi: 10.1261/rna.058180.116. Epub 2016 Sep 9.
6
The role of codon selection in regulation of translation efficiency deduced from synthetic libraries.
Genome Biol. 2011;12(2):R12. doi: 10.1186/gb-2011-12-2-r12. Epub 2011 Feb 1.
7
Ribosome traffic in E. coli and regulation of gene expression.
J Theor Biol. 2000 Jan 21;202(2):175-85. doi: 10.1006/jtbi.1999.1047.
8
Codon usage bias in 5' terminal coding sequences reveals distinct enrichment of gene functions.
Genomics. 2017 Oct;109(5-6):506-513. doi: 10.1016/j.ygeno.2017.07.008. Epub 2017 Aug 1.
9
Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2419-24. doi: 10.1073/pnas.1211077110. Epub 2012 Dec 31.
10
Quantifying codon usage in signal peptides: Gene expression and amino acid usage explain apparent selection for inefficient codons.
Biochim Biophys Acta Biomembr. 2018 Dec;1860(12):2479-2485. doi: 10.1016/j.bbamem.2018.09.010. Epub 2018 Sep 19.

引用本文的文献

1
Codon usage bias in yeasts and its correlation with gene expression, growth temperature, and protein structure.
Front Microbiol. 2024 Jul 8;15:1414422. doi: 10.3389/fmicb.2024.1414422. eCollection 2024.
2
The active free-living bathypelagic microbiome is largely dominated by rare surface taxa.
ISME Commun. 2024 Jan 23;4(1):ycae015. doi: 10.1093/ismeco/ycae015. eCollection 2024 Jan.
3
Stochastic dynamics and ribosome-RNAP interactions in transcription-translation coupling.
Biophys J. 2023 Jan 3;122(1):254-266. doi: 10.1016/j.bpj.2022.09.041. Epub 2022 Oct 4.
4
Environment-specificity and universality of the microbial growth law.
Commun Biol. 2022 Aug 31;5(1):891. doi: 10.1038/s42003-022-03815-w.
5
Variation in upstream open reading frames contributes to allelic diversity in maize protein abundance.
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2112516119. doi: 10.1073/pnas.2112516119. Epub 2022 Mar 29.
6
Quantitative Control for Stoichiometric Protein Synthesis.
Annu Rev Microbiol. 2021 Oct 8;75:243-267. doi: 10.1146/annurev-micro-041921-012646. Epub 2021 Aug 3.
7
High-throughput microbioreactor provides a capable tool for early stage bioprocess development.
Sci Rep. 2021 Jan 21;11(1):2056. doi: 10.1038/s41598-021-81633-6.
9

本文引用的文献

1
The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria.
Nature. 2012 Mar 28;484(7395):538-41. doi: 10.1038/nature10965.
2
Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10231-6. doi: 10.1073/pnas.1016719108. Epub 2011 Jun 6.
3
The role of tRNA and ribosome competition in coupling the expression of different mRNAs in Saccharomyces cerevisiae.
Nucleic Acids Res. 2011 Aug;39(15):6705-14. doi: 10.1093/nar/gkr300. Epub 2011 May 9.
4
Synonymous but not the same: the causes and consequences of codon bias.
Nat Rev Genet. 2011 Jan;12(1):32-42. doi: 10.1038/nrg2899. Epub 2010 Nov 23.
5
Interdependence of cell growth and gene expression: origins and consequences.
Science. 2010 Nov 19;330(6007):1099-102. doi: 10.1126/science.1192588.
6
A new bioinformatics analysis tools framework at EMBL-EBI.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W695-9. doi: 10.1093/nar/gkq313. Epub 2010 May 3.
7
An evolutionarily conserved mechanism for controlling the efficiency of protein translation.
Cell. 2010 Apr 16;141(2):344-54. doi: 10.1016/j.cell.2010.03.031.
8
General rules for optimal codon choice.
PLoS Genet. 2009 Jul;5(7):e1000556. doi: 10.1371/journal.pgen.1000556. Epub 2009 Jul 10.
9
Coding-sequence determinants of gene expression in Escherichia coli.
Science. 2009 Apr 10;324(5924):255-8. doi: 10.1126/science.1170160.
10
Transient ribosomal attenuation coordinates protein synthesis and co-translational folding.
Nat Struct Mol Biol. 2009 Mar;16(3):274-80. doi: 10.1038/nsmb.1554. Epub 2009 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验