Suppr超能文献

基于峭度图分析的感应电机轴承故障实时自动检测。

Real time automatic detection of bearing fault in induction machine using kurtogram analysis.

机构信息

Electrical Department, LTII Laboratory, University of Bejaia, Bejaia 06000, Algeria.

出版信息

J Acoust Soc Am. 2012 Nov;132(5):EL405-10. doi: 10.1121/1.4758764.

Abstract

A proposed signal processing technique for incipient real time bearing fault detection based on kurtogram analysis is presented in this paper. The kurtogram is a fourth-order spectral analysis tool introduced for detecting and characterizing non-stationarities in a signal. This technique starts from investigating the resonance signatures over selected frequency bands to extract the representative features. The traditional spectral analysis is not appropriate for non-stationary vibration signal and for real time diagnosis. The performance of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions. Test results show that this signal processing technique is an effective bearing fault automatic detection method and gives a good basis for an integrated induction machine condition monitor.

摘要

本文提出了一种基于峭度图分析的实时滚动轴承早期故障检测的信号处理方法。峭度图是一种四阶谱分析工具,用于检测和描述信号中的非平稳性。该技术从对选定频带的共振特征进行研究开始,以提取代表性特征。传统的频谱分析不适用于非平稳振动信号和实时诊断。通过一系列对应于不同轴承状况的实验测试来检验所提出技术的性能。测试结果表明,该信号处理技术是一种有效的滚动轴承故障自动检测方法,为集成感应电机状态监测提供了良好的基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验