Center for Advanced Nanoscale Materials, Department of Chemistry, University of Puerto Rico, Rio-Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931.
Langmuir. 2012 Dec 11;28(49):17202-10. doi: 10.1021/la3031396. Epub 2012 Nov 26.
An effort to develop smaller, well-dispersed catalytic materials electrochemically on high-surface-area carbon supports is required for improved fuel cell performance. A high-surface-area carbon material of interest is carbon nano-onions (CNOs), also known as multilayer fullerenes. The most convenient synthesis method for CNOs is annealing nanodiamond particles, thus retaining the size of the precursors and providing the possibility to prepare very small nanocatalysts using electrochemical techniques. In terms of pure metal catalysts, platinum is the most common catalyst used in fuel cells. The combination of Pt nanoparticles with CNOs could lead to new catalytic nanomaterials. In this work, this was accomplished by using a rotating disk-slurry electrode (RoDSE) technique. The Pt/CNO catalysts were prepared from slurries that contained functionalized CNOs and K(2)PtCl(6) as the platinum precursor in aqueous 0.1 M H(2)SO(4) solution. X-ray photoelectron spectroscopy results showed that 37% of the Pt on the CNOs is metallic Pt whereas 63% had higher binding energies, which is evidence of higher oxidation states or the presence of Pt atoms and clusters on CNOs. However, aberration-corrected scanning transmission electron microscopy of the Pt/CNOs confirmed the presence of Pt atoms and clusters on CNOs. Thermal gravimetric analysis showed the excellent thermal stability of the Pt/CNOs and a lower onset potential for the electrochemical oxidation of methanol compared to that of commercial Pt/Vulcan catalyst material. The computational method confirmed the Pt atoms' location at CNOs surface sites. Geometric parameters for distances between Pt atoms in the 3Pt/CNOs molecular system from our theoretical calculations are in agreement with the respective parameters obtained experimentally. The combination of CNO with RoDSE presents a new highly dispersed catalyst nanomaterial.
为了提高燃料电池的性能,需要在高表面积碳载体上电化学制备更小、分散更好的催化材料。一种高表面积的碳材料是碳纳米洋葱(CNOs),也称为多层富勒烯。CNOs 最方便的合成方法是退火纳米金刚石颗粒,从而保留前体的尺寸,并提供使用电化学技术制备非常小的纳米催化剂的可能性。就纯金属催化剂而言,铂是燃料电池中最常用的催化剂。Pt 纳米颗粒与 CNOs 的组合可能会产生新的催化纳米材料。在这项工作中,这是通过使用旋转圆盘-悬浮电极(RoDSE)技术来实现的。Pt/CNO 催化剂是由包含功能化 CNOs 和 K(2)PtCl(6)作为铂前体的悬浮液在 0.1 M H(2)SO(4)水溶液中制备的。X 射线光电子能谱结果表明,CNOs 上的 37%的 Pt 是金属 Pt,而 63%的 Pt 具有更高的结合能,这表明存在更高的氧化态或 CNOs 上 Pt 原子和团簇的存在。然而,Pt/CNOs 的校正像差扫描透射电子显微镜证实了 CNOs 上存在 Pt 原子和团簇。热重分析表明,Pt/CNOs 具有优异的热稳定性,并且与商业 Pt/Vulcan 催化剂材料相比,甲醇电化学氧化的起始电位更低。计算方法证实了 Pt 原子在 CNOs 表面位置的位置。从我们的理论计算中得到的 3Pt/CNOs 分子体系中 Pt 原子之间的距离的几何参数与实验获得的相应参数一致。CNO 与 RoDSE 的结合呈现出一种新的高度分散的催化剂纳米材料。