Suppr超能文献

在无载体碳纳米洋葱上进行铂电沉积。

Platinum electrodeposition on unsupported carbon nano-onions.

机构信息

Center for Advanced Nanoscale Materials, Department of Chemistry, University of Puerto Rico, Rio-Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931.

出版信息

Langmuir. 2012 Dec 11;28(49):17202-10. doi: 10.1021/la3031396. Epub 2012 Nov 26.

Abstract

An effort to develop smaller, well-dispersed catalytic materials electrochemically on high-surface-area carbon supports is required for improved fuel cell performance. A high-surface-area carbon material of interest is carbon nano-onions (CNOs), also known as multilayer fullerenes. The most convenient synthesis method for CNOs is annealing nanodiamond particles, thus retaining the size of the precursors and providing the possibility to prepare very small nanocatalysts using electrochemical techniques. In terms of pure metal catalysts, platinum is the most common catalyst used in fuel cells. The combination of Pt nanoparticles with CNOs could lead to new catalytic nanomaterials. In this work, this was accomplished by using a rotating disk-slurry electrode (RoDSE) technique. The Pt/CNO catalysts were prepared from slurries that contained functionalized CNOs and K(2)PtCl(6) as the platinum precursor in aqueous 0.1 M H(2)SO(4) solution. X-ray photoelectron spectroscopy results showed that 37% of the Pt on the CNOs is metallic Pt whereas 63% had higher binding energies, which is evidence of higher oxidation states or the presence of Pt atoms and clusters on CNOs. However, aberration-corrected scanning transmission electron microscopy of the Pt/CNOs confirmed the presence of Pt atoms and clusters on CNOs. Thermal gravimetric analysis showed the excellent thermal stability of the Pt/CNOs and a lower onset potential for the electrochemical oxidation of methanol compared to that of commercial Pt/Vulcan catalyst material. The computational method confirmed the Pt atoms' location at CNOs surface sites. Geometric parameters for distances between Pt atoms in the 3Pt/CNOs molecular system from our theoretical calculations are in agreement with the respective parameters obtained experimentally. The combination of CNO with RoDSE presents a new highly dispersed catalyst nanomaterial.

摘要

为了提高燃料电池的性能,需要在高表面积碳载体上电化学制备更小、分散更好的催化材料。一种高表面积的碳材料是碳纳米洋葱(CNOs),也称为多层富勒烯。CNOs 最方便的合成方法是退火纳米金刚石颗粒,从而保留前体的尺寸,并提供使用电化学技术制备非常小的纳米催化剂的可能性。就纯金属催化剂而言,铂是燃料电池中最常用的催化剂。Pt 纳米颗粒与 CNOs 的组合可能会产生新的催化纳米材料。在这项工作中,这是通过使用旋转圆盘-悬浮电极(RoDSE)技术来实现的。Pt/CNO 催化剂是由包含功能化 CNOs 和 K(2)PtCl(6)作为铂前体的悬浮液在 0.1 M H(2)SO(4)水溶液中制备的。X 射线光电子能谱结果表明,CNOs 上的 37%的 Pt 是金属 Pt,而 63%的 Pt 具有更高的结合能,这表明存在更高的氧化态或 CNOs 上 Pt 原子和团簇的存在。然而,Pt/CNOs 的校正像差扫描透射电子显微镜证实了 CNOs 上存在 Pt 原子和团簇。热重分析表明,Pt/CNOs 具有优异的热稳定性,并且与商业 Pt/Vulcan 催化剂材料相比,甲醇电化学氧化的起始电位更低。计算方法证实了 Pt 原子在 CNOs 表面位置的位置。从我们的理论计算中得到的 3Pt/CNOs 分子体系中 Pt 原子之间的距离的几何参数与实验获得的相应参数一致。CNO 与 RoDSE 的结合呈现出一种新的高度分散的催化剂纳米材料。

相似文献

1
Platinum electrodeposition on unsupported carbon nano-onions.
Langmuir. 2012 Dec 11;28(49):17202-10. doi: 10.1021/la3031396. Epub 2012 Nov 26.
3
Platinum electrodeposition at unsupported electrochemically reduced nanographene oxide for enhanced ammonia oxidation.
ACS Appl Mater Interfaces. 2014 Feb 12;6(3):2137-45. doi: 10.1021/am4052552. Epub 2014 Jan 17.
6
Preparation of nanosized Pt-Au alloy catalyst and its activity in methanol oxidation.
J Nanosci Nanotechnol. 2007 Nov;7(11):4073-6. doi: 10.1166/jnn.2007.070.
7
Polymer-mediated synthesis of highly dispersed Pt nanoparticles on carbon black.
Langmuir. 2005 Sep 27;21(20):9334-8. doi: 10.1021/la051892p.
10
Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation.
J Colloid Interface Sci. 2009 May 1;333(1):300-3. doi: 10.1016/j.jcis.2009.01.067. Epub 2009 Feb 3.

引用本文的文献

1
Paraffin Removal in the Synthesis of Novel Janus Carbon Nano-Onions.
ECS Trans. 2020;98(9):631-638. doi: 10.1149/09809.0631ecst.
3
The thermal-mechanical properties of functionally graded membrane electrode assembly of PEMFC.
J Mol Model. 2019 Nov 25;25(12):353. doi: 10.1007/s00894-019-4241-y.
4
Self-Optimized Catalysts: Hot-Electron Driven Photosynthesis of Catalytic Photocathodes.
ACS Appl Mater Interfaces. 2019 Oct 2;11(39):35713-35719. doi: 10.1021/acsami.9b10913. Epub 2019 Sep 17.
5
Platinum electrodeposition at unsupported electrochemically reduced nanographene oxide for enhanced ammonia oxidation.
ACS Appl Mater Interfaces. 2014 Feb 12;6(3):2137-45. doi: 10.1021/am4052552. Epub 2014 Jan 17.

本文引用的文献

1
Dipole polarizability of onion-like carbons and electromagnetic properties of their composites.
Nanotechnology. 2008 Mar 19;19(11):115706. doi: 10.1088/0957-4484/19/11/115706. Epub 2008 Feb 19.
2
Flame synthesis of carbon nano-onions enhanced by acoustic modulation.
Nanotechnology. 2010 Oct 29;21(43):435604. doi: 10.1088/0957-4484/21/43/435604. Epub 2010 Oct 4.
3
Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces.
Science. 2009 Nov 6;326(5954):826-9. doi: 10.1126/science.1180297.
4
Reactivity differences between carbon nano onions (CNOs) prepared by different methods.
Chem Asian J. 2007 May 4;2(5):625-33. doi: 10.1002/asia.200600426.
5
Preparation and functionalization of multilayer fullerenes (carbon nano-onions).
Chemistry. 2005 Dec 23;12(2):376-87. doi: 10.1002/chem.200500517.
7
One-dimensional metallic edge states in MoS2.
Phys Rev Lett. 2001 Nov 5;87(19):196803. doi: 10.1103/PhysRevLett.87.196803. Epub 2001 Oct 18.
8
Curling and closure of graphitic networks under electron-beam irradiation.
Nature. 1992 Oct 22;359(6397):707-9. doi: 10.1038/359707a0.
9
Atomic-scale structure of single-layer MoS2 nanoclusters.
Phys Rev Lett. 2000 Jan 31;84(5):951-4. doi: 10.1103/PhysRevLett.84.951.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验