Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States.
Nano Lett. 2012 Dec 12;12(12):6400-7. doi: 10.1021/nl303747n. Epub 2012 Nov 14.
Near-field optical techniques have enabled the trapping, transport, and handling of nanoscopic materials much smaller than what can be manipulated with traditional optical tweezers. Here we extend the scope of what is possible by demonstrating angular orientation and rotational control of both biological and nonbiological nanoscale rods using photonic crystal nanotweezers. In our experiments, single microtubules (diameter 25 nm, length 8 μm) and multiwalled carbon nanotubes (outer diameter 110-170 nm, length 5 μm) are rotated by the optical torque resulting from their interaction with the evanescent field emanating from these devices. An angular trap stiffness of κ = 92.8 pN·nm/rad(2)·mW is demonstrated for the microtubules, and a torsional spring constant of 22.8 pN·nm/rad(2)·mW is measured for the nanotubes. We expect that this new capability will facilitate the development of high precision nanoassembly schemes and biophysical studies of bending strains of biomolecules.
近场光学技术使得能够捕获、传输和处理比传统光镊所能操纵的更小的纳米级材料。在这里,我们通过演示使用光子晶体纳米镊子对生物和非生物纳米棒进行角度取向和旋转控制,扩展了这一可能性的范围。在我们的实验中,单根微管(直径 25nm,长度 8μm)和多壁碳纳米管(外径 110-170nm,长度 5μm)通过与从这些器件发出的消逝场相互作用产生的光转矩而旋转。微管的角捕获刚度κ=92.8pN·nm/rad(2)·mW,纳米管的扭转弹簧常数为 22.8pN·nm/rad(2)·mW。我们预计这项新功能将促进高精度纳米组装方案的发展和生物分子弯曲应变的生物物理研究。