Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
Sci Adv. 2016 Sep 9;2(9):e1600485. doi: 10.1126/sciadv.1600485. eCollection 2016 Sep.
Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.
当光以圆偏振或椭圆偏振形式传播时,光子会携带线性动量和自旋角动量。在光与物质相互作用过程中,线性动量的传递会产生光压力,而角动量的传递会产生光扭矩。光压力(包括辐射压力和梯度力)早已应用于光镊和激光冷却。在纳米光子器件中,光压力可以得到显著增强,从而在经典和量子领域产生前所未有的光机械效应。相比之下,到目前为止,光的角动量和光扭矩效应仅在光镊中得到了应用,而在集成光子学中仍未得到探索。我们演示了在双折射波导中传播的光子的自旋角动量的测量,以及利用光扭矩来驱动光机械装置的旋转运动。我们表明,光扭矩的符号和大小取决于在芯片上合成的光子偏振态。我们的研究揭示了光子偏振自由度的机械效应,并展示了其在集成光子器件中的控制。利用光扭矩和光子角动量的光机械相互作用可以导致扭转腔光机械和光机械光子自旋轨道耦合,以及光机械陀螺仪和扭转磁强计等应用。