Suppr超能文献

锰通过转铁蛋白机制进行运输。

Manganese transport via the transferrin mechanism.

机构信息

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.

出版信息

Neurotoxicology. 2013 Jan;34:118-27. doi: 10.1016/j.neuro.2012.10.018. Epub 2012 Nov 9.

Abstract

Excessive manganese (Mn) uptake by brain cells, particularly in regions like the basal ganglia, can lead to toxicity. Mn(2+) is transported into cells via a number of mechanisms, while Mn(3+) is believed to be transported similarly to iron (Fe) via the transferrin (Tf) mechanism. Cellular Mn uptake is therefore determined by the activity of the mechanisms transporting Mn into each type of cell and by the amounts of Mn(2+), Mn(3+) and their complexes to which these cells are exposed; this complicates understanding the contributions of each transporter to Mn toxicity. While uptake of Fe(3+) via the Tf mechanism is well understood, uptake of Mn(3+) via this mechanism has not been systematically studied. The stability of the Mn(3+)Tf complex allowed us to form and purify this complex and label it with a fluorescent (Alexa green) tag. Using purified and labeled Mn(3+)Tf and biophysical tools, we have developed a novel approach to study Mn(3+)Tf transport independently of other Mn transport mechanisms. This approach was used to compare the uptake of Mn(3+)Tf into neuronal cell lines with published descriptions of Fe(3+) uptake via the Tf mechanism, and to obtain quantitative information on Mn uptake via the Tf mechanism. Results confirm that in these cell lines significant Mn(3+) is transported by the Tf mechanism similarly to Fe(3+)Tf transport; although Mn(3+)Tf transport is markedly slower than other Mn transport mechanisms. This novel approach may prove useful for studying Mn toxicity in other systems and cell types.

摘要

脑细胞过度摄取锰 (Mn),特别是在基底神经节等区域,可能导致毒性。Mn(2+) 通过多种机制进入细胞,而 Mn(3+) 据信通过转铁蛋白 (Tf) 机制类似地被转运到铁 (Fe)。因此,细胞内 Mn 的摄取取决于将 Mn 转运到每种类型细胞的机制的活性以及这些细胞暴露的 Mn(2+)、Mn(3+) 及其复合物的数量;这使得理解每种转运蛋白对 Mn 毒性的贡献变得复杂。虽然 Tf 机制摄取 Fe(3+) 已经得到很好的理解,但通过该机制摄取 Mn(3+) 尚未得到系统研究。Mn(3+)Tf 配合物的稳定性使我们能够形成和纯化该配合物,并使用荧光 (Alexa green) 标记它。使用纯化和标记的 Mn(3+)Tf 和生物物理工具,我们开发了一种新方法来独立于其他 Mn 转运机制研究 Mn(3+)Tf 转运。该方法用于将 Mn(3+)Tf 摄取到神经元细胞系与通过 Tf 机制摄取 Fe(3+) 的已发表描述进行比较,并获得通过 Tf 机制摄取 Mn 的定量信息。结果证实,在这些细胞系中,大量的 Mn(3+) 通过 Tf 机制转运,类似于 Fe(3+)Tf 转运;尽管 Mn(3+)Tf 转运明显比其他 Mn 转运机制慢。这种新方法可能对研究其他系统和细胞类型中的 Mn 毒性很有用。

相似文献

1
Manganese transport via the transferrin mechanism.
Neurotoxicology. 2013 Jan;34:118-27. doi: 10.1016/j.neuro.2012.10.018. Epub 2012 Nov 9.
2
Manganese cell labeling of murine hepatocytes using manganese(III)-transferrin.
Contrast Media Mol Imaging. 2008 May-Jun;3(3):95-105. doi: 10.1002/cmmi.235.
3
Transferrin-bound iron uptake by the cultured cerebellar granule cells.
Neurosci Lett. 1998 Jul 17;251(1):9-12. doi: 10.1016/s0304-3940(98)00486-8.
5
Evidence for non-transferrin-mediated uptake and release of iron and manganese in glial cell cultures from hypotransferrinemic mice.
J Neurosci Res. 1998 Feb 15;51(4):454-62. doi: 10.1002/(SICI)1097-4547(19980215)51:4<454::AID-JNR5>3.0.CO;2-B.
6
Manganese and iron transport across pulmonary epithelium.
Am J Physiol Lung Cell Mol Physiol. 2006 Jun;290(6):L1247-59. doi: 10.1152/ajplung.00450.2005. Epub 2006 Jan 20.
7
Dendroaxonal transcytosis of transferrin in cultured hippocampal and sympathetic neurons.
J Neurosci. 1997 Dec 1;17(23):9026-34. doi: 10.1523/JNEUROSCI.17-23-09026.1997.
8
Characterization of iron uptake from transferrin by murine endothelial cells.
Endothelium. 2000;7(2):135-47. doi: 10.3109/10623320009072208.
9
Inhibition of uptake of transferrin-bound iron by human hepatoma cells by nontransferrin-bound iron.
Hepatology. 1997 Sep;26(3):691-8. doi: 10.1053/jhep.1997.v26.pm0009303500.
10
The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells.
Biochim Biophys Acta. 1997 Mar 14;1331(1):1-40. doi: 10.1016/s0304-4157(96)00014-7.

引用本文的文献

3
Metal Ion Signaling in Biomedicine.
Chem Rev. 2025 Jan 22;125(2):660-744. doi: 10.1021/acs.chemrev.4c00577. Epub 2025 Jan 2.
5
The impact of manganese on vascular endothelium.
Toxicol Res. 2024 Aug 13;40(4):501-517. doi: 10.1007/s43188-024-00260-1. eCollection 2024 Oct.
6
Scientific opinion on the tolerable upper intake level for manganese.
EFSA J. 2023 Dec 8;21(12):e8413. doi: 10.2903/j.efsa.2023.8413. eCollection 2023 Dec.
7
Trace metal elements: a bridge between host and intestinal microorganisms.
Sci China Life Sci. 2023 Sep;66(9):1976-1993. doi: 10.1007/s11427-022-2359-4. Epub 2023 Jul 28.
8
Electron paramagnetic spectrum of dimanganic human serum transferrin.
Polyhedron. 2021 Jul 15;203. doi: 10.1016/j.poly.2021.115224. Epub 2021 Apr 18.
9
Why is manganese so valuable to bacterial pathogens?
Front Cell Infect Microbiol. 2023 Feb 3;13:943390. doi: 10.3389/fcimb.2023.943390. eCollection 2023.
10
Speciation analysis of manganese against the background of its different content in the blood serum of dairy cows.
Biometals. 2023 Feb;36(1):35-48. doi: 10.1007/s10534-022-00456-8. Epub 2022 Oct 25.

本文引用的文献

1
Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells.
Metallomics. 2012 Jul;4(7):700-8. doi: 10.1039/c2mt20024d. Epub 2012 Apr 25.
2
The binding and transport of alternative metals by transferrin.
Biochim Biophys Acta. 2012 Mar;1820(3):362-78. doi: 10.1016/j.bbagen.2011.07.003. Epub 2011 Jul 18.
4
Manganese transport in eukaryotes: the role of DMT1.
Neurotoxicology. 2008 Jul;29(4):569-76. doi: 10.1016/j.neuro.2008.04.022. Epub 2008 May 14.
5
Pharmacological inhibition of endocytic pathways: is it specific enough to be useful?
Methods Mol Biol. 2008;440:15-33. doi: 10.1007/978-1-59745-178-9_2.
6
Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter.
Mol Pharmacol. 2008 May;73(5):1413-23. doi: 10.1124/mol.107.043588. Epub 2008 Feb 12.
7
Cd2+ versus Zn2+ uptake by the ZIP8 HCO3--dependent symporter: kinetics, electrogenicity and trafficking.
Biochem Biophys Res Commun. 2008 Jan 25;365(4):814-20. doi: 10.1016/j.bbrc.2007.11.067. Epub 2007 Nov 26.
8
Modulation of cholinergic systems by manganese.
Neurotoxicology. 2007 Sep;28(5):1003-14. doi: 10.1016/j.neuro.2007.08.006. Epub 2007 Aug 22.
9
Direct interorganellar transfer of iron from endosome to mitochondrion.
Blood. 2007 Jul 1;110(1):125-32. doi: 10.1182/blood-2007-01-068148. Epub 2007 Mar 21.
10
Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity.
Neurotoxicology. 2006 Sep;27(5):765-76. doi: 10.1016/j.neuro.2006.05.002. Epub 2006 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验