Centre for Medicine Use and Safety, Monash University, Melbourne, Victoria, Australia.
Antimicrob Agents Chemother. 2013 Jan;57(1):508-16. doi: 10.1128/AAC.01463-12. Epub 2012 Nov 12.
Murine models are used to study erythrocytic stages of malaria infection, because parasite morphology and development are comparable to those in human malaria infections. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) models for antimalarials are scarce, despite their potential to optimize antimalarial combination therapy. The aim of this study was to develop a mechanism-based growth model (MBGM) for Plasmodium berghei and then characterize the parasiticidal effect of dihydroartemisinin (DHA) in murine malaria (MBGM-PK-PD). Stage-specific (ring, early trophozoite, late trophozoite, and schizont) parasite density data from Swiss mice inoculated with Plasmodium berghei were used for model development in S-ADAPT. A single dose of intraperitoneal DHA (10 to 100 mg/kg) or vehicle was administered 56 h postinoculation. The MBGM explicitly reflected all four erythrocytic stages of the 24-hour P. berghei life cycle. Merozoite invasion of erythrocytes was described by a first-order process that declined with increasing parasitemia. An efflux pathway with subsequent return was additionally required to describe the schizont data, thus representing parasite sequestration or trapping in the microvasculature, with a return to circulation. A 1-compartment model with zero-order absorption described the PK of DHA, with an estimated clearance and distribution volume of 1.95 liters h(-1) and 0.851 liter, respectively. Parasite killing was described by a turnover model, with DHA inhibiting the production of physiological intermediates (IC(50), 1.46 ng/ml). Overall, the MBGM-PK-PD described the rise in parasitemia, the nadir following DHA dosing, and subsequent parasite resurgence. This novel model is a promising tool for studying malaria infections, identifying the stage specificity of antimalarials, and providing insight into antimalarial treatment strategies.
鼠类模型被用于研究疟原虫的红内期感染,因为寄生虫的形态和发育与人类疟疾感染相似。尽管基于机制的药代动力学-药效学(PK-PD)模型对优化抗疟联合疗法具有潜在作用,但此类模型仍然非常匮乏。本研究旨在建立一种伯氏疟原虫的基于机制的生长模型(MBGM),并对二氢青蒿素(DHA)在鼠疟中的杀虫作用进行特征描述(MBGM-PK-PD)。使用 S-ADAPT 从感染伯氏疟原虫的瑞士小鼠中获得具有时间特异性(环状体、早期滋养体、晚期滋养体和裂殖体)的寄生虫密度数据,用于模型开发。在感染后 56 小时,单次腹腔注射 DHA(10 至 100mg/kg)或载体。MBGM 明确反映了伯氏疟原虫 24 小时生命周期中的四个红内期阶段。疟原虫入侵红细胞的过程用一级过程来描述,该过程随着寄生虫血症的增加而下降。还需要一个外排途径,随后是返回,以描述裂殖体数据,从而代表寄生虫在微血管中的隔离或捕获,随后返回循环。一个具有零级吸收的一室模型描述了 DHA 的 PK,其估计清除率和分布容积分别为 1.95 升/小时和 0.851 升。寄生虫的杀伤用周转率模型来描述,DHA 抑制生理中间产物的产生(IC(50),1.46ng/ml)。总的来说,MBGM-PK-PD 描述了寄生虫血症的上升、DHA 给药后的最低点以及随后的寄生虫复发。这种新型模型是研究疟疾感染、鉴定抗疟药物的阶段特异性以及提供抗疟治疗策略的见解的有前途的工具。