Ordway Research Institute, Albany, New York 12208, USA.
AAPS J. 2011 Jun;13(2):201-11. doi: 10.1208/s12248-011-9257-x. Epub 2011 Mar 3.
Mechanistic modeling greatly benefits from automated pre- and post-processing of model code and modeling results. While S-ADAPT provides many state-of-the-art parametric population estimation methods, its pre- and post-processing capabilities are limited. Our objective was to develop a fully automated, open-source pre- and post-processor for nonlinear mixed-effects modeling in S-ADAPT. We developed a new translator tool (SADAPT-TRAN) based on Perl scripts. These scripts (a) automatically translate the core model components into robust Fortran code, (b) perform extensive mutual error checks across all input files and the raw dataset, (c) extend the options of the Monte Carlo Parametric Expectation Maximization (MC-PEM) algorithm, and (d) improve the numerical robustness of the model code. The post-processing scripts automatically summarize the results of one or multiple models as tables and, by generating problem specific R scripts, provide an extended series of standard and covariate-stratified diagnostic plots. The SADAPT-TRAN package substantially improved the efficiency to specify, debug, and evaluate models and enhanced the flexibility of using the MC-PEM algorithm for parallelized estimation in S-ADAPT. The parameter variability model can take any combination of normally, log-normally, or logistically distributed parameters and the SADAPT-TRAN package can automatically generate the Fortran code required to specify between occasion variability. Extended estimation features are available to avoid local minima, estimate means with negligible variances, and estimate variances for fixed means. The SADAPT-TRAN package significantly facilitated model development in S-ADAPT, reduced model specification errors, and provided useful error messages for beginner and advanced users. This benefit was greatest for complex mechanistic models.
机制建模极大地受益于模型代码和建模结果的自动化预处理和后处理。虽然 S-ADAPT 提供了许多最先进的参数群体估计方法,但它的预处理和后处理能力有限。我们的目标是为 S-ADAPT 中的非线性混合效应建模开发一个完全自动化的、开源的预处理和后处理器。我们基于 Perl 脚本开发了一个新的翻译工具(SADAPT-TRAN)。这些脚本(a)自动将核心模型组件转换为强大的 Fortran 代码,(b)在所有输入文件和原始数据集之间执行广泛的相互错误检查,(c)扩展 Monte Carlo 参数期望最大化(MC-PEM)算法的选项,(d)提高模型代码的数值鲁棒性。后处理脚本自动将一个或多个模型的结果总结为表格,并通过生成特定于问题的 R 脚本,提供一系列扩展的标准和协变量分层诊断图。SADAPT-TRAN 包大大提高了指定、调试和评估模型的效率,并增强了在 S-ADAPT 中使用 MC-PEM 算法进行并行估计的灵活性。参数可变性模型可以采用正态、对数正态或逻辑分布参数的任意组合,并且 SADAPT-TRAN 包可以自动生成指定场合可变性所需的 Fortran 代码。扩展的估计功能可用于避免局部最小值、估计具有可忽略方差的均值以及估计固定均值的方差。SADAPT-TRAN 包极大地促进了 S-ADAPT 中的模型开发,减少了模型规范错误,并为初学者和高级用户提供了有用的错误消息。对于复杂的机械模型,这种好处最大。