Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.
Biotechniques. 2012 Nov;53(5):285-98. doi: 10.2144/000113943.
Over the past decade, bimolecular fluorescence complementation (BiFC) has emerged as a key technique to visualize protein-protein interactions in a variety of model organisms. The BiFC assay is based on reconstitution of an intact fluorescent protein when two complementary non-fluorescent fragments are brought together by a pair of interacting proteins. While the originally reported BiFC method has enabled the study of many protein-protein interactions, increasing demands to visualize protein-protein interactions under various physiological conditions have not only prompted a series of recent BiFC technology improvements, but also stimulated interest in developing completely new approaches. Here we review current BiFC technology, focusing on the development and improvement of BiFC systems, the understanding of split sites in fluorescent proteins, and enhancements in the signal-to-noise ratio. In addition, we provide perspectives on possible future improvements of the technique.
在过去的十年中,双分子荧光互补(BiFC)已成为在多种模式生物中可视化蛋白质-蛋白质相互作用的关键技术。BiFC 测定法基于当一对相互作用的蛋白质将两个互补的非荧光片段聚集在一起时,完整荧光蛋白的重新组装。虽然最初报道的 BiFC 方法已经能够研究许多蛋白质-蛋白质相互作用,但是越来越多的需求要求在各种生理条件下可视化蛋白质-蛋白质相互作用,这不仅促使了一系列最近的 BiFC 技术改进,而且还激发了人们对开发全新方法的兴趣。在这里,我们回顾了当前的 BiFC 技术,重点介绍了 BiFC 系统的发展和改进、荧光蛋白中分裂位点的理解以及信噪比的提高。此外,我们还对该技术的未来改进提供了一些看法。