MTT Agrifood Research Finland, Biotechnology and Food Research, Biometrical Genetics, Jokioinen, Finland.
J Anim Breed Genet. 2012 Dec;129(6):457-68. doi: 10.1111/j.1439-0388.2012.01000.x. Epub 2012 Apr 28.
Multiple-trait and random regression models have multiplied the number of equations needed for the estimation of variance components. To avoid inversion or decomposition of a large coefficient matrix, we propose estimation of variance components by Monte Carlo expectation maximization restricted maximum likelihood (MC EM REML) for multiple-trait linear mixed models. Implementation is based on full-model sampling for calculating the prediction error variances required for EM REML. Performance of the analytical and the MC EM REML algorithm was compared using a simulated and a field data set. For field data, results from both algorithms corresponded well even with one MC sample within an MC EM REML round. The magnitude of the standard errors of estimated prediction error variances depended on the formula used to calculate them and on the MC sample size within an MC EM REML round. Sampling variation in MC EM REML did not impair the convergence behaviour of the solutions compared with analytical EM REML analysis. A convergence criterion that takes into account the sampling variation was developed to monitor convergence for the MC EM REML algorithm. For the field data set, MC EM REML proved far superior to analytical EM REML both in computing time and in memory need.
多性状和随机回归模型增加了估计方差分量所需的方程组数量。为了避免大型系数矩阵的求逆或分解,我们提出了用于多性状线性混合模型的蒙特卡罗期望极大化限制极大似然(MC EM REML)估计方差分量的方法。实现是基于全模型抽样,以计算 EM REML 所需的预测误差方差。使用模拟数据集和现场数据集比较了分析和 MC EM REML 算法的性能。对于现场数据,即使在 MC EM REML 回合中仅使用一个 MC 样本,两种算法的结果也非常吻合。估计的预测误差方差的标准误差的大小取决于用于计算它们的公式以及 MC EM REML 回合中的 MC 样本量。与分析 EM REML 分析相比,MC EM REML 中的抽样变化并没有损害解的收敛行为。开发了一个考虑抽样变化的收敛准则,以监测 MC EM REML 算法的收敛情况。对于现场数据集,MC EM REML 在计算时间和内存需求方面都远远优于分析 EM REML。