Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, UK.
Pflugers Arch. 2013 Apr;465(4):543-54. doi: 10.1007/s00424-012-1177-9. Epub 2012 Nov 14.
Pancreatic β cells respond to increases in glucose concentration with enhanced metabolism, the closure of ATP-sensitive K(+) channels and electrical spiking. The latter results in oscillatory Ca(2+) influx through voltage-gated Ca(2+) channels and the activation of insulin release. The relationship between changes in cytosolic and mitochondrial free calcium concentration ([Ca(2+)]cyt and [Ca(2+)]mit, respectively) during these cycles is poorly understood. Importantly, the activation of Ca(2+)-sensitive intramitochondrial dehydrogenases, occurring alongside the stimulation of ATP consumption required for Ca(2+) pumping and other processes, may exert complex effects on cytosolic ATP/ADP ratios and hence insulin secretion. To explore the relationship between these parameters in single primary β cells, we have deployed cytosolic (Fura red, Indo1) or green fluorescent protein-based recombinant-targeted (Pericam, 2mt8RP for mitochondria; D4ER for the ER) probes for Ca(2+) and cytosolic ATP/ADP (Perceval) alongside patch-clamp electrophysiology. We demonstrate that: (1) blockade of mitochondrial Ca(2+) uptake by shRNA-mediated silencing of the uniporter MCU attenuates glucose- and essentially blocks tolbutamide-stimulated, insulin secretion; (2) during electrical stimulation, mitochondria decode cytosolic Ca(2+) oscillation frequency as stable increases in [Ca(2+)]mit and cytosolic ATP/ADP; (3) mitochondrial Ca(2+) uptake rates remained constant between individual spikes, arguing against activity-dependent regulation ("plasticity") and (4) the relationship between [Ca(2+)]cyt and [Ca(2+)]mit is essentially unaffected by changes in endoplasmic reticulum Ca(2+) ([Ca(2+)]ER). Our findings thus highlight new aspects of Ca(2+) signalling in β cells of relevance to the actions of both glucose and sulphonylureas.
胰岛β细胞对葡萄糖浓度的增加做出反应,表现为代谢增强、ATP 敏感性钾(K+)通道关闭和电脉冲。后者导致电压门控 Ca2+通道中 Ca2+的振荡流入,并激活胰岛素释放。在这些循环中,细胞质和线粒体游离钙浓度(分别为[Ca2+]cyt 和 [Ca2+]mit)的变化之间的关系尚不清楚。重要的是,Ca2+敏感性线粒体内脱氢酶的激活,伴随着 ATP 消耗的刺激,这是 Ca2+泵浦和其他过程所必需的,可能对细胞质 ATP/ADP 比值产生复杂影响,从而影响胰岛素分泌。为了在单个原代β细胞中探索这些参数之间的关系,我们部署了细胞质(Fura red、Indo1)或基于绿色荧光蛋白的重组靶向探针(Pericam、2mt8RP 用于线粒体;D4ER 用于内质网)用于 Ca2+和细胞质 ATP/ADP(Perceval),以及膜片钳电生理学。我们证明:(1)通过 shRNA 介导的单向转运蛋白 MCU 的沉默阻断线粒体 Ca2+摄取,可减弱葡萄糖和基本上阻断甲苯磺丁脲刺激的胰岛素分泌;(2)在电刺激期间,线粒体将细胞质 Ca2+振荡频率解码为稳定增加的[Ca2+]mit 和细胞质 ATP/ADP;(3)单个尖峰之间线粒体 Ca2+摄取率保持不变,这表明不存在活动依赖性调节(“可塑性”);(4)[Ca2+]cyt 和 [Ca2+]mit 之间的关系基本上不受内质网 Ca2+([Ca2+]ER)变化的影响。因此,我们的研究结果强调了β细胞中 Ca2+信号转导的新方面,这些方面与葡萄糖和磺酰脲类药物的作用有关。