Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
Hypertension. 2013 Jan;61(1):174-9. doi: 10.1161/HYPERTENSIONAHA.112.194209. Epub 2012 Nov 12.
Migration of vascular smooth muscle cells (VSMCs) into neointima contributes to atherosclerosis and restenosis. This migration requires coordinated plasmalemmal fluxes of water and ions. Here, we show that aortic VSMC migration depends on the regulation of transmembrane Cl(-) flux by ClC-3, a Cl(-) channel/transporter. The contribution of ClC-3 to plasmalemmal Cl(-) current was studied in VSMCs by electrophysiological recordings. Cl(-) current was negligible in cells perfused with 0 [Ca(2+)]. Raising intracellular [Ca(2+)] to 0.5 μM activated a Cl(-) current (I(Cl.Ca)), approximately half of which was eliminated on inhibition by KN-93 of calmodulin-dependent protein kinase II. I(Cl.Ca) was also halved by inositol-3,4,5,6-tetrakisphosphate, a cellular signal with the biological function of specifically preventing calmodulin-dependent protein kinase II from activating I(Cl.Ca). Gene disruption of ClC-3 reduced I(Cl.Ca) by 50%. Moreover, I(Cl.Ca) in the ClC-3 null VSMCs was not affected by either KN-93 or inositol-3,4,5,6-tetrakisphosphate. We conclude that I(Cl.Ca) is composed of 2 components, one is ClC-3 independent whereas the other is ClC-3 dependent, activated by calmodulin-dependent protein kinase II and inhibited by inositol-3,4,5,6-tetrakisphosphate. We also assayed VSMC migration in transwell assays. Migration was halved in ClC-3 null cells versus wild-type cells. In addition, inhibition of ClC-3 by niflumic acid, KN-93, or inositol-3,4,5,6-tetrakisphosphate each reduced cell migration in wild-type cells but not in ClC-3 null cells. These cell-signaling roles of ClC-3 in VSMC migration suggest new therapeutic approaches to vascular remodeling diseases.
血管平滑肌细胞(VSMCs)向新生内膜的迁移导致动脉粥样硬化和再狭窄。这种迁移需要水和离子的质膜协同流动。在这里,我们显示主动脉 VSMC 迁移依赖于 ClC-3 调节跨膜 Cl(-)通量,ClC-3 是一种 Cl(-)通道/转运体。通过电生理记录研究了 VSMCs 中 ClC-3 对质膜 Cl(-)电流的调节作用。在 0 [Ca(2+)]灌注的细胞中,Cl(-)电流可以忽略不计。将细胞内 [Ca(2+)]提高到 0.5 μM 激活 Cl(-)电流(I(Cl.Ca)),其中约一半被钙调蛋白依赖性蛋白激酶 II 的抑制剂 KN-93 消除。肌醇-3,4,5,6-四磷酸(细胞信号,具有特异性防止钙调蛋白依赖性蛋白激酶 II 激活 I(Cl.Ca)的生物学功能)将 I(Cl.Ca)减半。ClC-3 基因缺失使 I(Cl.Ca)减少 50%。此外,ClC-3 缺失的 VSMCs 中的 I(Cl.Ca)不受 KN-93 或肌醇-3,4,5,6-四磷酸的影响。我们得出结论,I(Cl.Ca)由 2 个组成部分组成,一个是 ClC-3 独立的,另一个是 ClC-3 依赖的,由钙调蛋白依赖性蛋白激酶 II 激活,并受肌醇-3,4,5,6-四磷酸抑制。我们还在 Transwell 测定中检测了 VSMC 迁移。ClC-3 缺失细胞的迁移减少了一半,而野生型细胞则减少了一半。此外,ClC-3 的抑制剂尼氟灭酸、KN-93 或肌醇-3,4,5,6-四磷酸均可降低野生型细胞中的细胞迁移,但不能降低 ClC-3 缺失细胞中的细胞迁移。ClC-3 在 VSMC 迁移中的这些细胞信号作用提示了治疗血管重塑疾病的新方法。