Suppr超能文献

苜蓿中华根瘤菌 bacA 突变体表型的部分互补由结核分枝杆菌 BacA 蛋白完成。

Partial complementation of Sinorhizobium meliloti bacA mutant phenotypes by the Mycobacterium tuberculosis BacA protein.

机构信息

School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom.

出版信息

J Bacteriol. 2013 Jan;195(2):389-98. doi: 10.1128/JB.01445-12. Epub 2012 Nov 16.

Abstract

The Sinorhizobium meliloti BacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). The Mycobacterium tuberculosis BacA homolog was found to be important for the maintenance of chronic murine infections, yet its in vivo function is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that the M. tuberculosis BacA protein was able to partially complement the symbiotic defect of an S. meliloti BacA-deficient mutant on alfalfa plants and to protect this mutant in vitro from the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human β-defensin 2 (HBD2). This finding was also confirmed using an M. tuberculosis insertion mutant. Furthermore, M. tuberculosis BacA-mediated protection of the legume symbiont S. meliloti against legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show that M. tuberculosis BacA mediates peptide uptake of the truncated bovine AMP, Bac7(1-16). This process required a functional ATPase domain. We therefore suggest that M. tuberculosis BacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections.

摘要

苜蓿中华根瘤菌 BacA ABC 转运蛋白在其与豆科植物紫花苜蓿(Medicago sativa)的共生固氮中起着重要作用。已发现结核分枝杆菌 BacA 同源物对于维持慢性鼠类感染很重要,但它的体内功能尚不清楚。在豆科植物和哺乳动物宿主中,细菌会遇到宿主抗菌肽(AMPs)。我们发现结核分枝杆菌 BacA 蛋白能够部分弥补苜蓿植物上缺失 BacA 的苜蓿中华根瘤菌突变体的共生缺陷,并在体外保护该突变体免受合成豆科肽 NCR247 和重组人β-防御素 2(HBD2)的抗菌活性。这一发现也通过结核分枝杆菌插入突变体得到了证实。此外,结核分枝杆菌 BacA 介导的豆科共生体苜蓿中华根瘤菌对豆科防御素和 HBD2 的保护作用依赖于其附着的 ATP 酶结构域。此外,我们还表明,结核分枝杆菌 BacA 介导截断的牛抗菌肽 Bac7(1-16)的肽摄取。该过程需要一个功能齐全的 ATP 酶结构域。因此,我们认为结核分枝杆菌 BacA 对于跨细胞质膜运输肽是很重要的,并且是完整 ABC 转运体的一部分。因此,BacA 介导的对宿主 AMP 的保护可能对于维持潜伏感染很重要。

相似文献

1
Partial complementation of Sinorhizobium meliloti bacA mutant phenotypes by the Mycobacterium tuberculosis BacA protein.
J Bacteriol. 2013 Jan;195(2):389-98. doi: 10.1128/JB.01445-12. Epub 2012 Nov 16.
4
Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis.
PLoS Biol. 2011 Oct;9(10):e1001169. doi: 10.1371/journal.pbio.1001169. Epub 2011 Oct 4.
5
Essential role for the BacA protein in the uptake of a truncated eukaryotic peptide in Sinorhizobium meliloti.
J Bacteriol. 2009 Mar;191(5):1519-27. doi: 10.1128/JB.01661-08. Epub 2008 Dec 12.
6
Heterologous Complementation Reveals a Specialized Activity for BacA in the Medicago-Sinorhizobium meliloti Symbiosis.
Mol Plant Microbe Interact. 2017 Apr;30(4):312-324. doi: 10.1094/MPMI-02-17-0030-R. Epub 2017 Apr 10.
9
Genetic analysis of the Sinorhizobium meliloti BacA protein: differential effects of mutations on phenotypes.
J Bacteriol. 2001 Nov;183(21):6444-53. doi: 10.1128/JB.183.21.6444-6453.2001.

引用本文的文献

2
Single Cell Flow Cytometry Assay for Peptide Uptake by Bacteria.
Bio Protoc. 2016 Dec 5;6(23):e2038. doi: 10.21769/BioProtoc.2038.
3
Bidirectional ATP-driven transport of cobalamin by the mycobacterial ABC transporter BacA.
Nat Commun. 2024 Mar 23;15(1):2626. doi: 10.1038/s41467-024-46917-1.
4
Genomic Insights into Bacterial Resistance to Proline-Rich Antimicrobial Peptide Bac7.
Membranes (Basel). 2023 Apr 17;13(4):438. doi: 10.3390/membranes13040438.
5
Molecular mechanism of SbmA, a promiscuous transporter exploited by antimicrobial peptides.
Sci Adv. 2021 Sep 10;7(37):eabj5363. doi: 10.1126/sciadv.abj5363. Epub 2021 Sep 8.
6
Sinorhizobium meliloti Functions Required for Resistance to Antimicrobial NCR Peptides and Bacteroid Differentiation.
mBio. 2021 Aug 31;12(4):e0089521. doi: 10.1128/mBio.00895-21. Epub 2021 Jul 27.

本文引用的文献

1
Molecular insights into bacteroid development during Rhizobium-legume symbiosis.
FEMS Microbiol Rev. 2013 May;37(3):364-83. doi: 10.1111/1574-6976.12003. Epub 2013 Apr 2.
2
Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide.
J Biol Chem. 2012 Mar 30;287(14):10791-8. doi: 10.1074/jbc.M111.311316. Epub 2012 Feb 17.
3
The Medicago genome provides insight into the evolution of rhizobial symbioses.
Nature. 2011 Nov 16;480(7378):520-4. doi: 10.1038/nature10625.
4
Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims?
Mol Plant Microbe Interact. 2011 Nov;24(11):1300-9. doi: 10.1094/MPMI-06-11-0152.
5
Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis.
PLoS Biol. 2011 Oct;9(10):e1001169. doi: 10.1371/journal.pbio.1001169. Epub 2011 Oct 4.
6
Internalization of a thiazole-modified peptide in Sinorhizobium meliloti occurs by BacA-dependent and -independent mechanisms.
Microbiology (Reading). 2010 Sep;156(Pt 9):2702-2713. doi: 10.1099/mic.0.039909-0. Epub 2010 May 27.
7
BacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes.
J Bacteriol. 2010 Jun;192(11):2920-8. doi: 10.1128/JB.00020-10. Epub 2010 Apr 2.
8
Plant peptides govern terminal differentiation of bacteria in symbiosis.
Science. 2010 Feb 26;327(5969):1122-6. doi: 10.1126/science.1184057.
9
Global analysis of extracytoplasmic stress signaling in Escherichia coli.
PLoS Genet. 2009 Sep;5(9):e1000651. doi: 10.1371/journal.pgen.1000651. Epub 2009 Sep 18.
10
Efficient production of human beta-defensin 2 (HBD2) in Escherichia coli.
Protein Pept Lett. 2009;16(6):668-76. doi: 10.2174/092986609788490122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验