Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
mBio. 2021 Aug 31;12(4):e0089521. doi: 10.1128/mBio.00895-21. Epub 2021 Jul 27.
Legumes of the genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the odule-specific ysteine-ich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing. Moreover, the bacterial broad-specificity peptide uptake transporter BacA and exopolysaccharides contribute to protect the endosymbionts against the toxic activity of NCRs. Here, we show that other S. meliloti functions participate in the protection of the endosymbionts; these include an additional broad-specificity peptide uptake transporter encoded by the genes and lipopolysaccharide modifications mediated by and , as well as , encoding a stress sigma factor. Strains with mutations in these genes show a strain-specific increased sensitivity profile against a panel of NCRs and form nodules in which bacteroid differentiation is affected. The mutant nodule bacteria do not differentiate, the and mutants form some seemingly fully differentiated bacteroids, although most of the nodule bacteria are undifferentiated, while the mutants form hypertrophied but nitrogen-fixing bacteroids. The nodule bacteria of all the mutants have a strongly enhanced membrane permeability, which is dependent on the transport of NCRs to the endosymbionts. Our results suggest that S. meliloti relies on a suite of functions, including peptide transporters, the bacterial envelope structures, and stress response regulators, to resist the aggressive assault of NCR peptides in the nodule cells. The nitrogen-fixing symbiosis of legumes with rhizobium bacteria has a predominant ecological role in the nitrogen cycle and has the potential to provide the nitrogen required for plant growth in agriculture. The host plants allow the rhizobia to colonize specific symbiotic organs, the nodules, in large numbers in order to produce sufficient reduced nitrogen for the plants' needs. Some legumes, including spp., produce massively antimicrobial peptides to keep this large bacterial population in check. These peptides, known as NCRs, have the potential to kill the rhizobia, but in nodules, they rather inhibit the division of the bacteria, which maintain a high nitrogen-fixing activity. In this study, we show that the tempering of the antimicrobial activity of the NCR peptides in the symbiont Sinorhizobium meliloti is multifactorial and requires the YejABEF peptide transporter, the lipopolysaccharide outer membrane, and the stress response regulator RpoH1.
豆科植物与根瘤菌属的细菌具有共生关系,并形成根瘤,其中容纳大量的细胞内共生体。模块特异性半胱氨酸丰富肽(NCR)家族的成员诱导内共生体进入终末分化状态。个别阳离子 NCR 是具有杀死共生体能力的抗菌肽,但根瘤细胞环境可防止杀伤。此外,细菌广谱肽摄取转运蛋白 BacA 和胞外多糖有助于保护内共生体免受 NCR 毒性的影响。在这里,我们表明,其他 S. meliloti 功能参与了对内共生体的保护;这些功能包括由 基因编码的另一种广谱肽摄取转运蛋白,以及由 、 和 编码的脂多糖修饰,以及编码应激σ因子。这些基因发生突变的菌株对一组 NCR 表现出特定的敏感性增加,形成的根瘤中类菌体分化受到影响。 突变体的根瘤细菌不会分化, 、 和 突变体形成一些看似完全分化的类菌体,尽管大多数根瘤细菌没有分化,而 突变体形成肥大但固氮的类菌体。所有突变体的根瘤细菌的膜通透性都大大增强,这依赖于 NCR 向共生体的运输。我们的结果表明,S. meliloti 依赖于一系列功能,包括肽转运蛋白、细菌包膜结构和应激反应调节剂,以抵抗根瘤细胞中 NCR 肽的侵袭。豆科植物与根瘤菌的固氮共生在氮循环中具有主要的生态作用,并有可能为农业中植物生长提供所需的氮。宿主植物允许根瘤菌在特定的共生器官——根瘤中大量定植,以产生足够的还原氮来满足植物的需要。一些豆科植物,包括 spp.,会产生大量的抗菌肽来控制这种庞大的细菌种群。这些肽,称为 NCR,具有杀死根瘤菌的潜力,但在根瘤中,它们抑制细菌的分裂,从而保持高固氮活性。在这项研究中,我们表明,在共生的 Sinorhizobium meliloti 中,NCR 肽的抗菌活性的缓和是多因素的,需要 YejABEF 肽转运蛋白、脂多糖外膜和应激反应调节剂 RpoH1。