Department of Biology, Indiana University, Bloomington, IN 47405, USA.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20136-41. doi: 10.1073/pnas.1211777109. Epub 2012 Nov 16.
The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.
海洋蓝藻聚球藻是世界海洋中第二丰富的浮游植物生物。该属的普遍存在在很大程度上是由于其使用了一组多样化的光合作用光捕获色素,称为藻胆蛋白,这使得它能够有效地利用广泛的光颜色。在这里,我们揭示了一个普遍存在于海洋聚球藻细胞中的关键分子机制,称为“IV 型颜色适应(CA4)”。在这个过程中,该生物体的两种主要藻胆蛋白,藻红蛋白 I 和 II 的色素沉着可逆地修饰以匹配环境光颜色的变化,从而最大限度地捕获用于光合作用的光子。CA4 涉及在细胞从绿光转移到蓝光时,用等量的蓝光吸收色素藻蓝蛋白替代三个绿光吸收色素藻红胆素,而在从蓝光转移到绿光后则相反。我们已经鉴定并表征了 MpeZ,这是海洋聚球藻中 CA4 的关键酶。MpeZ 将藻红胆素附着到藻红蛋白 II 的α亚基的半胱氨酸-83 上,并将其异构化为藻蓝蛋白。在蓝光中,mpeZ RNA 的丰度增加了六倍,这表明其适当的调节对 CA4 至关重要。此外,mpeZ 突变体在蓝光中无法正常适应。这些发现提供了对控制生态重要光合作用过程的分子机制的深入了解,并鉴定了一类独特的藻胆蛋白裂合酶/异构酶,这将进一步扩大藻胆蛋白在生物技术和细胞生物学应用中的广泛应用。