Suppr超能文献

编码串联调节因子的自我调节基因组岛赋予海洋聚球藻属细菌色适应能力。

Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus.

作者信息

Sanfilippo Joseph E, Nguyen Adam A, Karty Jonathan A, Shukla Animesh, Schluchter Wendy M, Garczarek Laurence, Partensky Frédéric, Kehoe David M

机构信息

Department of Biology, Indiana University, Bloomington, IN 47405;

Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148; Department of Chemistry, University of New Orleans, New Orleans, LA 70148;

出版信息

Proc Natl Acad Sci U S A. 2016 May 24;113(21):6077-82. doi: 10.1073/pnas.1600625113. Epub 2016 May 5.

Abstract

The evolutionary success of marine Synechococcus, the second-most abundant phototrophic group in the marine environment, is partly attributable to this group's ability to use the entire visible spectrum of light for photosynthesis. This group possesses a remarkable diversity of light-harvesting pigments, and most of the group's members are orange and pink because of their use of phycourobilin and phycoerythrobilin chromophores, which are attached to antennae proteins called phycoerythrins. Many strains can alter phycoerythrin chromophore ratios to optimize photon capture in changing blue-green environments using type IV chromatic acclimation (CA4). Although CA4 is common in most marine Synechococcus lineages, the regulation of this process remains unexplored. Here, we show that a widely distributed genomic island encoding tandem master regulators named FciA (for type four chromatic acclimation island) and FciB plays a central role in controlling CA4. FciA and FciB have diametric effects on CA4. Interruption of fciA causes a constitutive green light phenotype, and interruption of fciB causes a constitutive blue light phenotype. These proteins regulate all of the molecular responses occurring during CA4, and the proteins' activity is apparently regulated posttranscriptionally, although their cellular ratio appears to be critical for establishing the set point for the blue-green switch in ecologically relevant light environments. Surprisingly, FciA and FciB coregulate only three genes within the Synechococcus genome, all located within the same genomic island as fciA and fciB These findings, along with the widespread distribution of strains possessing this island, suggest that horizontal transfer of a small, self-regulating DNA region has conferred CA4 capability to marine Synechococcus throughout many oceanic areas.

摘要

海洋聚球藻是海洋环境中第二丰富的光合营养类群,其在进化上的成功部分归因于该类群能够利用整个可见光谱进行光合作用。该类群拥有种类繁多的捕光色素,并且由于其使用附着在称为藻红蛋白的天线蛋白上的藻尿胆素和藻红胆素发色团,该类群的大多数成员呈橙色和粉红色。许多菌株可以改变藻红蛋白发色团比例,以利用IV型色适应(CA4)在不断变化的蓝绿色环境中优化光子捕获。尽管CA4在大多数海洋聚球藻谱系中很常见,但这一过程的调控仍未得到探索。在这里,我们表明,一个广泛分布的基因组岛编码名为FciA(用于IV型色适应岛)和FciB的串联主调节因子,在控制CA4中起核心作用。FciA和FciB对CA4有截然相反的影响。fciA的中断导致组成型绿光表型,fciB的中断导致组成型蓝光表型。这些蛋白质调节CA4过程中发生的所有分子反应,并且这些蛋白质的活性显然在转录后受到调节,尽管它们的细胞比例似乎对于在生态相关光环境中建立蓝绿转换的设定点至关重要。令人惊讶的是,FciA和FciB仅共同调节聚球藻基因组中的三个基因,所有这些基因都与fciA和fciB位于同一基因组岛内。这些发现,连同拥有该岛的菌株的广泛分布,表明一个小的、自我调节的DNA区域的水平转移赋予了许多海洋区域的海洋聚球藻CA4能力。

相似文献

1
Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):6077-82. doi: 10.1073/pnas.1600625113. Epub 2016 May 5.
2
Molecular bases of an alternative dual-enzyme system for light color acclimation of marine cyanobacteria.
Proc Natl Acad Sci U S A. 2021 Mar 2;118(9). doi: 10.1073/pnas.2019715118.
3
Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20136-41. doi: 10.1073/pnas.1211777109. Epub 2012 Nov 16.
4
A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus.
PLoS One. 2013 Dec 31;8(12):e84459. doi: 10.1371/journal.pone.0084459. eCollection 2013.
5
Interplay between differentially expressed enzymes contributes to light color acclimation in marine .
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6457-6462. doi: 10.1073/pnas.1810491116. Epub 2019 Mar 7.
6
Light Color Regulation of Photosynthetic Antennae Biogenesis in Marine Phytoplankton.
Plant Cell Physiol. 2025 Feb 28;66(2):168-180. doi: 10.1093/pcp/pcae115.
7
CpeY is a phycoerythrobilin lyase for cysteine 82 of the phycoerythrin I α-subunit in marine Synechococcus.
Biochim Biophys Acta Bioenerg. 2020 Aug 1;1861(8):148215. doi: 10.1016/j.bbabio.2020.148215. Epub 2020 Apr 29.
9
Differential acclimation kinetics of the two forms of type IV chromatic acclimaters occurring in marine cyanobacteria.
Front Microbiol. 2024 Feb 16;15:1349322. doi: 10.3389/fmicb.2024.1349322. eCollection 2024.
10
Adaptation to Blue Light in Marine Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases.
Front Microbiol. 2017 Feb 21;8:243. doi: 10.3389/fmicb.2017.00243. eCollection 2017.

引用本文的文献

1
Competition for light color between marine strains with fixed and variable pigmentation.
Appl Environ Microbiol. 2025 Aug 20;91(8):e0008725. doi: 10.1128/aem.00087-25. Epub 2025 Jul 24.
2
Light quality, oxygenic photosynthesis and more.
Photosynthetica. 2022 Jan 6;60(1):25-28. doi: 10.32615/ps.2021.055. eCollection 2022.
4
Cyanobacteriochromes: A Rainbow of Photoreceptors.
Annu Rev Microbiol. 2024 Nov;78(1):61-81. doi: 10.1146/annurev-micro-041522-094613. Epub 2024 Nov 7.
5
Double-duty isomerases: a case study of isomerization-coupled enzymatic catalysis.
Trends Biochem Sci. 2024 Aug;49(8):703-716. doi: 10.1016/j.tibs.2024.04.007. Epub 2024 May 17.
6
Differential acclimation kinetics of the two forms of type IV chromatic acclimaters occurring in marine cyanobacteria.
Front Microbiol. 2024 Feb 16;15:1349322. doi: 10.3389/fmicb.2024.1349322. eCollection 2024.
9
Chromatic Acclimation Processes and Their Relationships with Phycobiliprotein Complexes.
Microorganisms. 2022 Aug 3;10(8):1562. doi: 10.3390/microorganisms10081562.
10
Multiple Photolyases Protect the Marine Cyanobacterium from Ultraviolet Radiation.
mBio. 2022 Aug 30;13(4):e0151122. doi: 10.1128/mbio.01511-22. Epub 2022 Jul 20.

本文引用的文献

1
Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix.
Microbiology (Reading). 1996 May;142(5):1255-1263. doi: 10.1099/13500872-142-5-1255.
2
Evolutionary adaptation of an AraC-like regulatory protein in Citrobacter rodentium and Escherichia species.
Infect Immun. 2015 Apr;83(4):1384-95. doi: 10.1128/IAI.02697-14. Epub 2015 Jan 26.
3
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
4
Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.
Science. 2014 Sep 12;345(6202):1312-7. doi: 10.1126/science.1256963. Epub 2014 Aug 21.
5
H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria.
Plasmid. 2014 Sep;75:1-11. doi: 10.1016/j.plasmid.2014.06.004. Epub 2014 Jul 3.
6
Development of a targeted metagenomic approach to study a genomic region involved in light harvesting in marine Synechococcus.
FEMS Microbiol Ecol. 2014 May;88(2):231-49. doi: 10.1111/1574-6941.12285. Epub 2014 Feb 24.
7
A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus.
PLoS One. 2013 Dec 31;8(12):e84459. doi: 10.1371/journal.pone.0084459. eCollection 2013.
9
Characterization of the GbdR regulon in Pseudomonas aeruginosa.
J Bacteriol. 2014 Jan;196(1):7-15. doi: 10.1128/JB.01055-13. Epub 2013 Oct 4.
10
Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):12030-5. doi: 10.1073/pnas.1306260110. Epub 2013 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验