Suppr超能文献

螯合剂对 Fe(III)(水合)氧化物介导的生物成因水铀矿再氧化的影响。

Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides.

机构信息

Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States.

出版信息

Environ Sci Technol. 2013 Jan 2;47(1):364-71. doi: 10.1021/es303022p. Epub 2012 Dec 11.

Abstract

Microbially mediated reduction of soluble U(VI) to U(IV) with subsequent precipitation of uraninite, UO(2(S)), has been proposed as a method for limiting uranium (U) migration. However, microbially reduced UO(2) may be susceptible to reoxidation by environmental factors, with Fe(III) (hydr)oxides playing a significant role. Little is known about the role that organic compounds such as Fe(III) chelators play in the stability of reduced U. Here, we investigate the impact of citrate, DFB, EDTA, and NTA on biogenic UO(2) reoxidation with ferrihydrite, goethite, and hematite. Experiments were conducted in anaerobic batch systems in PIPES buffer (10 mM, pH 7) with bicarbonate for approximately 80 days. Results showed EDTA accelerated UO(2) reoxidation the most at an initial rate of 9.5 μM day(-1) with ferrihydrite, 8.6 μM day(-1) with goethite, and 8.8 μM day(-1) with hematite. NTA accelerated UO(2) reoxidation with ferrihydrite at a rate of 4.8 μM day(-1); rates were less with goethite and hematite (0.66 and 0.71 μM day(-1), respectively). Citrate increased UO(2) reoxidation with ferrihydrite at a rate of 1.8 μM day(-1), but did not increase the extent of reaction with goethite or hematite, with no reoxidation in this case. In all cases, bicarbonate increased the rate and extent of UO(2) reoxidation with ferrihydrite in the presence and absence of chelators. The highest rate of UO(2) reoxidation occurred when the chelator promoted both UO(2) and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO(2) dissolution did not occur, UO(2) reoxidation likely proceeded through an aqueous Fe(III) intermediate with lower reoxidation rates observed. Reaction modeling suggests that strong Fe(II) chelators promote reoxidation whereas strong Fe(III) chelators impede it. These results indicate that chelators found in U contaminated sites may play a significant role in mobilizing U, potentially affecting bioremediation efforts.

摘要

微生物介导的可溶性 U(VI)还原为 U(IV),随后沉淀为铀矿,UO(2(S)),已被提议作为限制铀 (U) 迁移的一种方法。然而,微生物还原的 UO(2)可能容易受到环境因素的再氧化,其中 Fe(III)(水合)氧化物起着重要作用。对于有机化合物(如 Fe(III)螯合剂)在还原 U 的稳定性中所起的作用知之甚少。在这里,我们研究了柠檬酸、DFB、EDTA 和 NTA 对生物生成的 UO(2)与针铁矿、赤铁矿和赤铁矿再氧化的影响。实验在 PIPES 缓冲液(10 mM,pH 7)中的厌氧批量系统中进行,其中含有碳酸氢盐,持续约 80 天。结果表明,EDTA 以 9.5 μM day(-1) 的初始速率与针铁矿、8.6 μM day(-1) 的赤铁矿和 8.8 μM day(-1) 的赤铁矿最能加速 UO(2)的再氧化。NTA 以 4.8 μM day(-1) 的速率加速 UO(2)与针铁矿的再氧化;与赤铁矿和赤铁矿的速率较低(分别为 0.66 和 0.71 μM day(-1))。柠檬酸以 1.8 μM day(-1) 的速率增加 UO(2)与针铁矿的再氧化,但不会增加与赤铁矿或赤铁矿的反应程度,在这种情况下没有再氧化。在所有情况下,碳酸氢盐都会增加螯合剂存在和不存在时针铁矿上 UO(2)再氧化的速率和程度。当螯合剂促进 UO(2)和 Fe(III)(水合)氧化物溶解时,UO(2)的再氧化速率最高,如 EDTA 所示。当 UO(2)不溶解时,UO(2)的再氧化可能通过水溶液中的 Fe(III)中间体进行,观察到的再氧化速率较低。反应模拟表明,强 Fe(II)螯合剂促进再氧化,而强 Fe(III)螯合剂则阻碍再氧化。这些结果表明,在 U 污染的地点发现的螯合剂可能在使 U 移动方面发挥重要作用,从而可能影响生物修复工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验