Suppr超能文献

量化钙和铁对细菌还原铀(VI)的限制作用。

Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI).

作者信息

Stewart Brandy D, Neiss Jim, Fendorf Scott

机构信息

Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA.

出版信息

J Environ Qual. 2007 Jan 25;36(2):363-72. doi: 10.2134/jeq2006.0058. Print 2007 Mar-Apr.

Abstract

Uranium is a redox active contaminant of concern to both human health and ecological preservation. In anaerobic soils and sediments, the more mobile, oxidized form of uranium (UO(2)(2+) and associated species) may be reduced by dissimilatory metal-reducing bacteria. Despite rapid reduction in controlled, experimental systems, various factors within soils or sediments may limit biological reduction of U(VI), inclusive of competing electron acceptors and alterations in uranyl speciation. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite, and hematite) varying in free energies of formation. Observed pseudo first-order rate coefficients for U(VI) reduction vary from 12 +/- 0.60 x 10(-3) h(-1) (0 mM Ca in the presence of goethite) to 2.0 +/- 0.10 x 10(-3) h(-1) (0.8 mM Ca in the presence of hematite). Nevertheless, dissolved Ca (at concentrations from 0.2 to 0.8 mM) decreases the extent of U(VI) reduction by approximately 25% after 528 h relative to rates without Ca present. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Ferrihydrite, in contrast, acts as a competitive electron acceptor and thus, like Ca, decreases uranium reduction. However, while ferrihydrite decreases U(VI) in solutions without Ca, with increasing Ca concentrations U(VI) reduction is enhanced in the presence of ferrihydrite (relative to its absence)-U(VI) reduction, in fact, becomes almost independent of Ca concentration. The quantitative framework described herein helps to predict the fate and transport of uranium within anaerobic environments.

摘要

铀是一种对人类健康和生态保护都至关重要的具有氧化还原活性的污染物。在厌氧土壤和沉积物中,铀的流动性更强的氧化态形式(UO(2)(2+)及相关物种)可能会被异化金属还原菌还原。尽管在受控的实验系统中还原速度很快,但土壤或沉积物中的各种因素可能会限制U(VI)的生物还原,包括竞争性电子受体和铀酰形态的变化。在此,我们阐明了U(VI)形态对还原程度和速率的影响,并研究了形成自由能不同的Fe(III)(氢)氧化物(水铁矿、针铁矿和赤铁矿)的影响。观察到的U(VI)还原的伪一级速率系数从12±0.60×10(-3) h(-1)(在针铁矿存在下0 mM Ca)到2.0±0.10×10(-3) h(-1)(在赤铁矿存在下0.8 mM Ca)不等。然而,相对于无Ca存在时的速率,溶解的Ca(浓度为0.2至0.8 mM)在528小时后会使U(VI)的还原程度降低约25%。针铁矿和赤铁矿通过吸附降低了钙的溶解浓度,从而倾向于减弱钙对铀还原的影响,这为铀还原提供了一个重要标准。相比之下,水铁矿作为竞争性电子受体,因此像Ca一样会降低铀的还原。然而,虽然在无Ca的溶液中水铁矿会降低U(VI),但随着Ca浓度的增加,在水铁矿存在下U(VI)的还原会增强(相对于不存在水铁矿的情况)——事实上,U(VI)的还原几乎变得与Ca浓度无关。本文所述的定量框架有助于预测厌氧环境中铀的归宿和迁移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验