Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
J Neurosci Methods. 2013 Jan 30;212(2):283-96. doi: 10.1016/j.jneumeth.2012.10.021. Epub 2012 Nov 16.
The analysis of auditory evoked cortical responses in fetal magnetoencephalography (fMEG) can be used as an early marker of functional cerebral development. A major obstacle for this objective is the very low signal-to-noise ratio of the fMEG recordings in presence of other biological contaminants (mainly maternal and fetal cardiac activities). Due to the fMEG nonstationarity and noise, the purpose of the present study is to improve the detection of the fetal auditory evoked response (fAER) by proposing a multi-stage framework for removing maternal and fetal artifacts using quasi-periodicity of cardiac activities, semi-blind source separation methods and detection of fAER using an ad hoc matched filter. The validation stage is performed using synchronous averaging, energy ratio comparison, statistical analysis of signal distribution, and the geometric localization of the fetal head and heart. The validation results show that the method can be effectively used in high precision fMEG and fAER applications.
胎儿脑磁图(fMEG)中听觉诱发皮质反应的分析可作为功能性大脑发育的早期标志物。由于存在其他生物干扰(主要是母体和胎儿的心脏活动),fMEG 记录的信噪比非常低,这是实现该目标的主要障碍。由于 fMEG 的非平稳性和噪声,本研究旨在通过利用心脏活动的准周期性、半盲源分离方法以及使用专门设计的匹配滤波器检测 fAER,提出一种多阶段框架来提高胎儿听觉诱发响应(fAER)的检测能力。验证阶段采用同步平均、能量比比较、信号分布的统计分析以及胎儿头部和心脏的几何定位。验证结果表明,该方法可有效地用于高精度 fMEG 和 fAER 应用。