Sato João Ricardo, Takahashi Daniel Yasumasa, Cardoso Ellison Fernando, Martin Maria da Graça Morais, Amaro Júnior Edson, Morettin Pedro Alberto
Departamento de Estatística, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Sp 05508-090, Brazil ; Laboratório de Neuroimagem Funcional (NIF), Lim 44, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Sp 05403-001, Brazil.
Int J Biomed Imaging. 2006;2006:27483. doi: 10.1155/IJBI/2006/27483. Epub 2006 Sep 5.
Recent advances in neuroimaging techniques have provided precise spatial localization of brain activation applied in several neuroscience subareas. The development of functional magnetic resonance imaging (fMRI), based on the BOLD signal, is one of the most popular techniques related to the detection of neuronal activation. However, understanding the interactions between several neuronal modules is also an important task, providing a better comprehension about brain dynamics. Nevertheless, most connectivity studies in fMRI are based on a simple correlation analysis, which is only an association measure and does not provide the direction of information flow between brain areas. Other proposed methods like structural equation modeling (SEM) seem to be attractive alternatives. However, this approach assumes prior information about the causality direction and stationarity conditions, which may not be satisfied in fMRI experiments. Generally, the fMRI experiments are related to an activation task; hence, the stimulus conditions should also be included in the model. In this paper, we suggest an intervention analysis, which includes stimulus condition, allowing a nonstationary modeling. Furthermore, an illustrative application to real fMRI dataset from a simple motor task is presented.
神经成像技术的最新进展为应用于多个神经科学子领域的大脑激活提供了精确的空间定位。基于血氧水平依赖(BOLD)信号的功能磁共振成像(fMRI)的发展是与神经元激活检测相关的最流行技术之一。然而,理解多个神经元模块之间的相互作用也是一项重要任务,有助于更好地理解大脑动态。尽管如此,fMRI中的大多数连通性研究都基于简单的相关性分析,这只是一种关联度量,并未提供脑区之间信息流的方向。其他提出的方法,如结构方程建模(SEM),似乎是有吸引力的替代方案。然而,这种方法假设了关于因果关系方向和平稳性条件的先验信息,而这在fMRI实验中可能无法满足。一般来说,fMRI实验与激活任务相关;因此,刺激条件也应包含在模型中。在本文中,我们提出一种干预分析,其中包括刺激条件,允许进行非平稳建模。此外,还展示了对来自简单运动任务的真实fMRI数据集的说明性应用。