Suppr超能文献

静息态功能磁共振成像数据与局部模型的相互连通性分析。

Mutual connectivity analysis of resting-state functional MRI data with local models.

机构信息

Department of Electrical Engineering, University of Rochester, Rochester, NY, USA.

Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.

出版信息

Neuroimage. 2018 Sep;178:210-223. doi: 10.1016/j.neuroimage.2018.05.038. Epub 2018 May 17.

Abstract

Functional connectivity analysis of functional MRI (fMRI) can represent brain networks and reveal insights into interactions amongst different brain regions. However, most connectivity analysis approaches adopted in practice are linear and non-directional. In this paper, we demonstrate the advantage of a data-driven, directed connectivity analysis approach called Mutual Connectivity Analysis using Local Models (MCA-LM) that approximates connectivity by modeling nonlinear dependencies of signal interaction, over more conventionally used approaches, such as Pearson's and partial correlation, Patel's conditional dependence measures, etcetera. We demonstrate on realistic simulations of fMRI data that, at long sampling intervals, i.e. high repetition time (TR) of fMRI signals, MCA-LM performs better than or comparable to correlation-based methods and Patel's measures. However, at fast image acquisition rates corresponding to low TR, MCA-LM significantly outperforms these methods. This insight is particularly useful in the light of recent advances in fast fMRI acquisition techniques. Methods that can capture the complex dynamics of brain activity, such as MCA-LM, should be adopted to extract as much information as possible from the improved representation. Furthermore, MCA-LM works very well for simulations generated at weak neuronal interaction strengths, and simulations modeling inhibitory and excitatory connections as it disentangles the two opposing effects between pairs of regions/voxels. Additionally, we demonstrate that MCA-LM is capable of capturing meaningful directed connectivity on experimental fMRI data. Such results suggest that it introduces sufficient complexity into modeling fMRI time-series interactions that simple, linear approaches cannot, while being data-driven, computationally practical and easy to use. In conclusion, MCA-LM can provide valuable insights towards better understanding brain activity.

摘要

功能磁共振成像(fMRI)的功能连接分析可以表示大脑网络,并揭示不同大脑区域之间相互作用的见解。然而,目前实践中采用的大多数连接分析方法都是线性和非定向的。在本文中,我们展示了一种称为基于局部模型的互连接分析(MCA-LM)的数据驱动、有向连接分析方法的优势,该方法通过对信号相互作用的非线性依赖性进行建模来近似连接,优于更传统的方法,如 Pearson 相关和偏相关、Patel 的条件依赖度量等。我们在 fMRI 数据的现实模拟中证明,在长采样间隔(即 fMRI 信号的高重复时间(TR))下,MCA-LM 的性能优于或可与基于相关的方法和 Patel 度量相媲美。然而,在对应于低 TR 的快速图像采集率下,MCA-LM 显著优于这些方法。鉴于最近快速 fMRI 采集技术的进步,这一见解尤其有用。能够捕获大脑活动复杂动态的方法,如 MCA-LM,应被采用以从改进的表示中尽可能多地提取信息。此外,MCA-LM 在神经元相互作用强度较弱的模拟中表现非常出色,并且在模拟抑制和兴奋连接时也能很好地发挥作用,因为它可以区分区域/体素对之间的两种相反效应。此外,我们证明 MCA-LM 能够在实验 fMRI 数据上捕获有意义的有向连接。这些结果表明,它在对 fMRI 时间序列相互作用进行建模时引入了足够的复杂性,而简单的线性方法则无法做到,同时它还具有数据驱动、计算实用和易于使用的特点。总之,MCA-LM 可以为更好地理解大脑活动提供有价值的见解。

相似文献

1
Mutual connectivity analysis of resting-state functional MRI data with local models.
Neuroimage. 2018 Sep;178:210-223. doi: 10.1016/j.neuroimage.2018.05.038. Epub 2018 May 17.
3
Can Patel's τ accurately estimate directionality of connections in brain networks from fMRI?
Magn Reson Med. 2017 Nov;78(5):2003-2010. doi: 10.1002/mrm.26583. Epub 2017 Jan 16.
4
Physiologically informed dynamic causal modeling of fMRI data.
Neuroimage. 2015 Nov 15;122:355-72. doi: 10.1016/j.neuroimage.2015.07.078. Epub 2015 Aug 5.
5
Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
J Neurosci Methods. 2017 Aug 1;287:68-79. doi: 10.1016/j.jneumeth.2017.06.007. Epub 2017 Jun 16.
6
Directed functional connectivity using dynamic graphical models.
Neuroimage. 2018 Jul 15;175:340-353. doi: 10.1016/j.neuroimage.2018.03.074. Epub 2018 Apr 3.
9
Sustained versus instantaneous connectivity differentiates cognitive functions of processing speed and episodic memory.
Hum Brain Mapp. 2018 Dec;39(12):4949-4961. doi: 10.1002/hbm.24336. Epub 2018 Aug 16.
10
Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
Neuroimage. 2017 Nov 1;161:251-260. doi: 10.1016/j.neuroimage.2017.08.055. Epub 2017 Aug 24.

引用本文的文献

1
Neuroimaging advances in neurocognitive disorders among HIV-infected individuals.
Front Neurol. 2025 Feb 13;16:1479183. doi: 10.3389/fneur.2025.1479183. eCollection 2025.
2
Causal Analysis of Activity in Social Brain Areas During Human-Agent Conversation.
Front Neuroergon. 2022 May 17;3:843005. doi: 10.3389/fnrgo.2022.843005. eCollection 2022.
4
Dynamic time warping outperforms Pearson correlation in detecting atypical functional connectivity in autism spectrum disorders.
Neuroimage. 2020 Dec;223:117383. doi: 10.1016/j.neuroimage.2020.117383. Epub 2020 Sep 17.
5
Synergistic effects of HIV and marijuana use on functional brain network organization.
Prog Neuropsychopharmacol Biol Psychiatry. 2021 Jan 10;104:110040. doi: 10.1016/j.pnpbp.2020.110040. Epub 2020 Jul 18.
6
Rethinking Measures of Functional Connectivity via Feature Extraction.
Sci Rep. 2020 Jan 28;10(1):1298. doi: 10.1038/s41598-020-57915-w.

本文引用的文献

1
Discovering Event Structure in Continuous Narrative Perception and Memory.
Neuron. 2017 Aug 2;95(3):709-721.e5. doi: 10.1016/j.neuron.2017.06.041.
2
Distinct timescales of population coding across cortex.
Nature. 2017 Aug 3;548(7665):92-96. doi: 10.1038/nature23020. Epub 2017 Jul 19.
3
Directed network discovery with dynamic network modelling.
Neuropsychologia. 2017 May;99:1-11. doi: 10.1016/j.neuropsychologia.2017.02.006. Epub 2017 Feb 16.
4
Empirical validation of directed functional connectivity.
Neuroimage. 2017 Feb 1;146:275-287. doi: 10.1016/j.neuroimage.2016.11.037. Epub 2016 Nov 14.
5
Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding.
PLoS Comput Biol. 2015 Nov 19;11(11):e1004537. doi: 10.1371/journal.pcbi.1004537. eCollection 2015 Nov.
6
A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex.
Neuron. 2015 Oct 21;88(2):419-31. doi: 10.1016/j.neuron.2015.09.008. Epub 2015 Oct 1.
7
Measuring Asymmetric Interactions in Resting State Brain Networks.
Inf Process Med Imaging. 2015;24:399-410. doi: 10.1007/978-3-319-19992-4_31.
9
Detecting causality from nonlinear dynamics with short-term time series.
Sci Rep. 2014 Dec 12;4:7464. doi: 10.1038/srep07464.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验