Jonić S, Thévenaz P, Zheng G, Nolte L-P, Unser M
Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne VD CH-1015, Switzerland ; Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie, Paris 75015, France.
Int J Biomed Imaging. 2006;2006:47197. doi: 10.1155/IJBI/2006/47197. Epub 2006 Apr 6.
We have developed an algorithm for the rigid-body registration of a CT volume to a set of C-arm images. The algorithm uses a gradient-based iterative minimization of a least-squares measure of dissimilarity between the C-arm images and projections of the CT volume. To compute projections, we use a novel method for fast integration of the volume along rays. To improve robustness and speed, we take advantage of a coarse-to-fine processing of the volume/image pyramids. To compute the projections of the volume, the gradient of the dissimilarity measure, and the multiresolution data pyramids, we use a continuous image/volume model based on cubic B-splines, which ensures a high interpolation accuracy and a gradient of the dissimilarity measure that is well defined everywhere. We show the performance of our algorithm on a human spine phantom, where the true alignment is determined using a set of fiducial markers.
我们开发了一种将CT体积数据与一组C形臂图像进行刚体配准的算法。该算法使用基于梯度的迭代最小化方法,以最小化C形臂图像与CT体积数据投影之间的差异的最小二乘度量。为了计算投影,我们使用了一种沿射线对体积进行快速积分的新方法。为了提高鲁棒性和速度,我们利用了体积/图像金字塔的粗到精处理。为了计算体积的投影、差异度量的梯度和多分辨率数据金字塔,我们使用基于三次B样条的连续图像/体积模型,这确保了高插值精度和在各处都定义良好的差异度量梯度。我们在人体脊柱模型上展示了我们算法的性能,其中使用一组基准标记确定真实对齐。