Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8808.
Med Phys. 2013 Oct;40(10):101912. doi: 10.1118/1.4821099.
Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).
The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.
Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left-right (L-R), anterior-posterior (A-P), and superior-inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.
The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.
在四维锥形束 CT(4D-CBCT)中,图像重建和运动模型估计通常被视为两个连续的步骤。由于在每个相位中投影的数量有限,4D-CBCT 的图像质量会因视场混淆伪影而降低,随后的运动建模的准确性也会因较差的 4D-CBCT 而降低。本工作的目的是通过一种新的策略,同时进行运动估计和图像重建(SMEIR),提高 4D-CBCT 的图像质量和运动模型估计的准确性。
所提出的 SMEIR 算法由两个交替的步骤组成:(1)基于模型的迭代图像重建,以获得运动补偿的主 CBCT(m-pCBCT);(2)运动模型估计,以获得 m-pCBCT 和其他 4D-CBCT 相位之间的最优变形向量场(DVF)集。运动补偿图像重建基于同时代数重建技术(SART)和全变差最小化。在 SART 的正向和反向投影过程中,使用整个 4D-CBCT 的测量投影,通过利用更新的 DVF,对 m-pCBCT 进行重建。通过将变形的 m-pCBCT 的正向投影与其他相位的测量投影相匹配,来估计 DVF。在 4D NCAT 体模上对 SMEIR 算法的性能进行了定量评估。通过与传统的顺序 4D-CBCT 重建(FDK 和全变差最小化)和运动估计(demons 算法)相比,评估重建的 4D 图像的质量和肿瘤运动轨迹的准确性。通过对肺癌患者的 4D-CBCT 进行重建,进一步评估了 SMEIR 算法的性能。
在体模和患者研究中,SMEIR 算法大大提高了 4D-CBCT 的图像质量。当使用 FDK 用所有投影重建 3D-CBCT 时,存在运动模糊伪影,导致 NACT 体模的相对重建误差为 24.4%。当使用 FDK 从 20 个投影重建 4D-CBCT 时,存在视场混淆伪影,相对误差为 32.1%。当使用全变差最小化重建 4D-CBCT 时,相对误差为 18.9%。使用 SMEIR 算法可显著提高 4D-CBCT 的图像质量,相对误差降低至 7.6%。通过 demons 注册在 FDK 重建的 4D-CBCT 上获得的 DVF 确定的肿瘤运动的最大误差(MaxE)分别为左右(L-R)、前后(A-P)和上下(S-I)方向的 3.0、2.3 和 7.1mm。通过 demons 注册在全变差最小化重建的 4D-CBCT 上获得的 DVF,肿瘤运动的 MaxE 减少到 1.5、0.5 和 5.5mm 沿 L-R、A-P 和 S-I 方向。通过 SMEIR 算法估计的 DVF,肿瘤运动的 MaxE 进一步减少到 0.8、0.4 和 1.5mm 沿 L-R、A-P 和 S-I 方向。
所提出的 SMEIR 算法能够估计运动模型并重建运动补偿的 4D-CBCT。与传统的顺序 4D-CBCT 重建和运动估计相比,SMEIR 算法提高了 4D-CBCT 的图像重建精度和肿瘤运动轨迹估计精度。