School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332-0100, USA.
Chemistry. 2012 Dec 21;18(52):16649-64. doi: 10.1002/chem.201203144. Epub 2012 Nov 20.
Silica supported amine materials are promising compositions that can be used to effectively remove CO(2) from large stationary sources, such as flue gas generated from coal-fired power plants (ca. 10 % CO(2)) and potentially from ambient air (ca. 400 ppm CO(2)). The CO(2) adsorption characteristics of prototypical poly(ethyleneimine)-silica composite adsorbents can be significantly enhanced by altering the acid/base properties of the silica support by heteroatom incorporation into the silica matrix. In this study, an array of poly(ethyleneimine)-impregnated mesoporous silica SBA-15 materials containing heteroatoms (Al, Ti, Zr, and Ce) in their silica matrices are prepared and examined in adsorption experiments under conditions simulating flue gas (10 % CO(2) in Ar) and ambient air (400 ppm CO(2) in Ar) to assess the effects of heteroatom incorporation on the CO(2) adsorption properties. The structure of the composite adsorbents, including local information concerning the state of the incorporated heteroatoms and the overall surface properties of the silicate supports, are investigated in detail to draw a relationship between the adsorbent structure and CO(2) adsorption/desorption performance. The CO(2) adsorption/desorption kinetics are assessed by thermogravimetric analysis and in situ FT-IR measurements. These combined results, coupled with data on adsorbent regenerability, demonstrate a stabilizing effect of the heteroatoms on the poly(ethyleneimine), enhancing adsorbent capacity, adsorption kinetics, regenerability, and stability of the supported aminopolymers over continued cycling. It is suggested that the CO(2) adsorption performance of silica-aminopolymer composites may be further enhanced in the future by more precisely tuning the acid/base properties of the support.
硅基胺材料是一种很有前途的组成部分,可以有效地从大型固定源(如燃煤电厂产生的烟道气(约 10%的 CO2)和潜在的环境空气中(约 400ppm 的 CO2))中去除 CO2。通过杂原子掺入硅基质,可以显著增强典型的聚乙烯亚胺-硅复合材料吸附剂的 CO2 吸附特性,改变硅载体的酸碱性质。在这项研究中,制备了一系列含有杂原子(Al、Ti、Zr 和 Ce)的硅基的聚乙烯亚胺浸渍介孔硅 SBA-15 复合材料,并在模拟烟道气(10%CO2 在 Ar 中的混合物)和环境空气(400ppm CO2 在 Ar 中的混合物)条件下进行吸附实验,以评估杂原子掺入对 CO2 吸附性能的影响。详细研究了复合材料吸附剂的结构,包括有关掺入杂原子的局部信息和硅酸盐载体的整体表面性质,以在吸附剂结构和 CO2 吸附/解吸性能之间建立关系。通过热重分析和原位 FT-IR 测量评估 CO2 的吸附/解吸动力学。这些综合结果,再加上关于吸附剂可再生性的数据,证明了杂原子对聚乙烯亚胺的稳定作用,增强了吸附剂的容量、吸附动力学、可再生性和支撑的胺聚合物在持续循环中的稳定性。有人认为,通过更精确地调整支撑物的酸碱性质,未来硅基-胺聚合物复合材料的 CO2 吸附性能可能会进一步提高。