Suppr超能文献

通过中子散射、核磁共振和分子动力学模拟评估受限在多孔二氧化硅载体中的胺的分布和流动性:对CO吸附动力学和容量的影响

Distribution and Mobility of Amines Confined in Porous Silica Supports Assessed via Neutron Scattering, NMR, and MD Simulations: Impacts on CO Sorption Kinetics and Capacities.

作者信息

Moon Hyun June, Carrillo Jan Michael Y, Jones Christopher W

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Center of Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.

出版信息

Acc Chem Res. 2023 Oct 3;56(19):2620-2630. doi: 10.1021/acs.accounts.3c00363. Epub 2023 Sep 18.

Abstract

ConspectusSolid-supported amines are a promising class of CO sorbents capable of selectively capturing CO from diverse sources. The chemical interactions between the amine groups and CO give rise to the formation of strong CO adducts, such as alkylammonium carbamates, carbamic acids, and bicarbonates, which enable CO capture even at low driving force, such as with ultradilute CO streams. Among various solid-supported amine sorbents, oligomeric amines infused into oxide solid supports (noncovalently supported) are widely studied due to their ease of synthesis and low cost. This method allows for the construction of amine-rich sorbents while minimizing problems, such as leaching or evaporation, that occur with supported molecular amines.Researchers have pursued improved sorbents by tuning the physical and chemical properties of solid supports and amine phases. In terms of CO uptake, the amine efficiency, or the moles of sorbed CO per mole of amine sites, and uptake rate (CO capture per unit time) are the most critical factors determining the effectiveness of the material. While structure-property relationships have been developed for different porous oxide supports, the interaction(s) of the amine phase with the solid support, the structure and distribution of the organic phase within the pores, and the mobility of the amine phase within the pores are not well understood. These factors are important, because the kinetics of CO sorption, particularly when using the prototypical amine oligomer branched poly(ethylenimine) (PEI), follow an unconventional trend, with rapid initial uptake followed by a very slow, asymptotic approach to equilibrium. This suggests that the uptake of CO within such solid-supported amines is mass transfer-limited. Therefore, improving sorption performance can be facilitated by better understanding the amine structure and distribution within the pores.In this context, model solid-supported amine sorbents were constructed from a highly ordered, mesoporous silica SBA-15 support, and an array of techniques was used to probe the soft matter domains within these hybrid materials. The choice of SBA-15 as the model support was based on its ordered arrangement of mesopores with tunable physical and chemical properties, including pore size, particle lengths, and surface chemistries. Branched PEI─the most common amine phase used in solid CO sorbents─and its linear, low molecular weight analogue, tetraethylenepentamine (TEPA), were deployed as the amine phases. Neutron scattering (NS), including small angle neutron scattering (SANS) and quasielastic neutron scattering (QENS), alongside solid-state NMR (ssNMR) and molecular dynamics (MD) simulations, was used to elucidate the structure and mobility of the amine phases within the pores of the support. Together, these tools, which have previously not been applied to such materials, provided new information regarding how the amine phases filled the support pores as the loading increased and the mobility of those amine phases. Varying pore surface-amine interactions led to unique trends for amine distributions and mobility; for instance, hydrophilic walls (i.e., attractive to amines) resulted in hampered motions with more intimate coordination to the walls, while amines around hydrophobic walls or walls with grafted chains that interrupt amine-wall coordination showed recovered mobility, with amines being more liberated from the walls. By correlating the structural and dynamic properties with CO sorption properties, novel relationships were identified, shedding light on the performance of the amine sorbents, and providing valuable guidance for the design of more effective supported amine sorbents.

摘要

综述

固体负载胺是一类很有前景的CO吸附剂,能够从多种来源中选择性地捕获CO。胺基团与CO之间的化学相互作用导致形成强CO加合物,如烷基氨基甲酸盐、氨基甲酸和碳酸氢盐,即使在低驱动力下,如超稀释CO气流中,也能实现CO捕获。在各种固体负载胺吸附剂中,注入氧化物固体载体(非共价负载)的低聚胺由于其易于合成和低成本而被广泛研究。这种方法允许构建富含胺的吸附剂,同时将负载型分子胺出现的诸如浸出或蒸发等问题降至最低。

研究人员通过调整固体载体和胺相的物理和化学性质来寻求性能更优的吸附剂。就CO吸收而言,胺效率,即每摩尔胺位点吸附的CO摩尔数,以及吸收速率(单位时间内的CO捕获量)是决定材料有效性的最关键因素。虽然已经针对不同的多孔氧化物载体建立了结构-性能关系,但胺相与固体载体的相互作用、孔内有机相的结构和分布以及胺相在孔内的迁移率尚未得到很好的理解。这些因素很重要,因为CO吸附的动力学,特别是当使用典型的胺低聚物支化聚(乙烯亚胺)(PEI)时,遵循一种非常规趋势,即初始吸收迅速,随后是非常缓慢的渐近平衡过程。这表明在这种固体负载胺中CO的吸收受传质限制。因此,通过更好地理解胺在孔内的结构和分布可以促进吸附性能的提高。

在这种情况下,由高度有序的介孔二氧化硅SBA-15载体构建了模型固体负载胺吸附剂,并使用一系列技术来探测这些杂化材料中的软物质区域。选择SBA-15作为模型载体是基于其具有可调物理和化学性质(包括孔径、颗粒长度和表面化学性质)的介孔有序排列。支化PEI(固体CO吸附剂中最常用的胺相)及其线性、低分子量类似物四亚乙基五胺(TEPA)被用作胺相。中子散射(NS),包括小角中子散射(SANS)和准弹性中子散射(QENS),以及固态核磁共振(ssNMR)和分子动力学(MD)模拟,被用于阐明载体孔内胺相的结构和迁移率。这些以前未应用于此类材料的工具共同提供了关于随着负载增加胺相如何填充载体孔以及这些胺相迁移率的新信息。不同的孔表面-胺相互作用导致胺分布和迁移率出现独特趋势;例如,亲水壁(即对胺有吸引力)导致运动受阻,与壁的配位更紧密,而疏水壁或带有中断胺-壁配位的接枝链的壁周围的胺显示出恢复的迁移率,胺从壁上更自由地释放。通过将结构和动态性质与CO吸附性质相关联,确定了新的关系,揭示了胺吸附剂的性能,并为设计更有效的负载胺吸附剂提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2477/10552550/96b2681ae27a/ar3c00363_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验