Suppr超能文献

Fgf 在空间和时间上的梯度差异调节斑马鱼内耳神经发育的不同阶段。

A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear.

机构信息

Biology Department, Texas A&M University, College Station, Texas, United States of America.

出版信息

PLoS Genet. 2012;8(11):e1003068. doi: 10.1371/journal.pgen.1003068. Epub 2012 Nov 15.

Abstract

Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows.

摘要

蜗神经节(SAG)的神经母细胞最初在相对较短的发育窗口期间形成于耳囊中。它们很快就会脱离并经历增殖和迁移(过渡扩增)的漫长阶段。神经母细胞最终分化并双向延伸,与内耳的毛细胞和后脑的各种靶标形成突触。我们在斑马鱼中的研究表明,Fgf 信号转导控制着这个复杂发育过程的多个阶段。从中耳斑的起始处发出的梯度中等水平的 Fgf 特异性指定了侧方相邻的耳上皮中的 SAG 神经母细胞。在稍后的阶段,分化的 SAG 神经元表达 Fgf5,它具有两个功能:首先,随着 SAG 神经元的积累,Fgf 的水平升高超过上限,从而终止神经母细胞特异性的初始阶段。其次,升高的 Fgf 延迟了过渡扩增细胞的分化,平衡了祖细胞更新与神经元分化的速度。成熟的 SAG 神经元的激光消融消除了反馈抑制并导致早熟的神经元分化。通过 Fgf5 敲低或 Fgf 信号转导的整体损伤可以获得类似的效果,而 Fgf 过表达则具有相反的效果。因此,Fgf 信号转导使 SAG 发育具有自我调节性,确保随着幼虫的生长稳定地产生适当数量的神经元。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754b/3499369/e212d9e15d3e/pgen.1003068.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验