Fritz-Haber-Institut der Max-Planck-Gesellschaft, Theory Department, Berlin, Germany.
J Phys Chem B. 2012 Dec 27;116(51):14788-804. doi: 10.1021/jp3098268. Epub 2012 Dec 10.
We study the initial steps of the interaction of water molecules with two unsolvated peptides: Ac-Ala(5)-LysH(+) and Ac-Ala(8)-LysH(+). Each peptide has two primary candidate sites for water adsorption near the C-terminus: a protonated carboxyl group and the protonated ammonium group of LysH(+), which is fully hydrogen-bonded (self-solvated) in the absence of water. Earlier experimental studies have shown that H(2)O adsorbs readily at Ac-Ala(5)-LysH(+) (a non-helical peptide) but with a much lower propensity at Ac-Ala(8)-LysH(+) (a helix) under the same conditions. The helical conformation of Ac-Ala(8)-LysH(+) has been suggested as the origin of the different behavior. We here use first-principles conformational searches (all-electron density functional theory based on a van der Waals corrected version of the PBE functional, PBE+vdW) to study the microsolvation of Ac-Ala(5)-LysH(+) with one to five water molecules and the monohydration of Ac-Ala(8)-LysH(+). In both cases, the most favorable water adsorption sites break intramolecular hydrogen bonds associated with the ammonium group, in contrast to earlier suggestions in the literature. A simple thermodynamic model yields Gibbs free energies ΔG(0)(T) and equilibrium constants in agreement with experiments. A qualitative change of the first adsorption site does not occur. For few water molecules, we do not consider carboxyl deprotonation or finite-temperature dynamics, but in a liquid solvent, both effects would be important. Exploratory ab initio molecular dynamics simulations illustrate the short-time effects of a droplet of 152 water molecules on the initial unsolvated conformation, including the deprotonation of the carboxyl group. The self-solvation of the ammonium group by intramolecular hydrogen bonds is lifted in favor of a solvation by water.
Ac-Ala(5)-LysH(+)和 Ac-Ala(8)-LysH(+)。每个肽在 C 末端附近都有两个主要的水吸附候选位点:质子化的羧基和 LysH(+)的质子化铵基,在没有水的情况下,LysH(+)完全通过氢键(自溶剂化)。早期的实验研究表明,在相同条件下,H(2)O 很容易吸附在 Ac-Ala(5)-LysH+(一种非螺旋肽)上,但在 Ac-Ala(8)-LysH+(一种螺旋肽)上的吸附倾向要低得多。Ac-Ala(8)-LysH(+)的螺旋构象被认为是导致这种不同行为的原因。我们在这里使用第一性原理构象搜索(基于范德华修正的 PBE 泛函的全电子密度泛函理论,PBE+vdW)来研究 Ac-Ala(5)-LysH(+)与一个到五个水分子的微溶剂化以及 Ac-Ala(8)-LysH(+)的单水合作用。在这两种情况下,最有利的水吸附位点都打破了与铵基有关的分子内氢键,这与文献中的早期建议相反。一个简单的热力学模型得出的吉布斯自由能ΔG(0)(T)和平衡常数与实验结果一致。第一个吸附位点的定性变化不会发生。对于少量的水分子,我们不考虑羧基去质子化或有限温度动力学,但在液体溶剂中,这两种效应都很重要。探索性的从头分子动力学模拟说明了 152 个水分子液滴在初始未溶剂化构象上的短时间效应,包括羧基的去质子化。由于氢键的作用,铵基的内部分子自溶剂化被解除,转而有利于水分子的溶剂化。