Suppr超能文献

分子构象搜索与低能潜伏空间。

Molecular Conformer Search with Low-Energy Latent Space.

机构信息

State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China.

Department of Applied Physics, Aalto University, Espoo 00076, Finland.

出版信息

J Chem Theory Comput. 2022 Jul 12;18(7):4574-4585. doi: 10.1021/acs.jctc.2c00290. Epub 2022 Jun 13.

Abstract

Identifying low-energy conformers with quantum mechanical accuracy for molecules with many degrees of freedom is challenging. In this work, we use the molecular dihedral angles as features and explore the possibility of performing molecular conformer search in a latent space with a generative model named variational auto-encoder (VAE). We bias the VAE towards low-energy molecular configurations to generate more informative data. In this way, we can effectively build a reliable energy model for the low-energy potential energy surface. After the energy model has been built, we extract local-minimum conformations and refine them with structure optimization. We have tested and benchmarked our low-energy latent-space (LOLS) structure search method on organic molecules with 5-9 searching dimensions. Our results agree with previous studies.

摘要

对于具有多个自由度的分子,用量子力学精度来识别低能构象是具有挑战性的。在这项工作中,我们使用分子的二面角作为特征,并探索了使用变分自动编码器(VAE)的生成模型在潜在空间中进行分子构象搜索的可能性。我们偏向于低能分子构象,以生成更具信息量的数据。通过这种方式,我们可以有效地为低能势能表面构建可靠的能量模型。在构建了能量模型之后,我们提取局部极小构象并通过结构优化对其进行细化。我们已经在具有 5-9 个搜索维度的有机分子上测试和基准测试了我们的低能潜空间(LOLS)结构搜索方法。我们的结果与先前的研究一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27d9/9281398/755c0abdffde/ct2c00290_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验