Suppr超能文献

拉曼光谱结合先进统计学方法区分月经血和外周血。

Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood.

机构信息

Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.

出版信息

J Biophotonics. 2014 Jan;7(1-2):59-67. doi: 10.1002/jbio.201200191. Epub 2012 Nov 23.

Abstract

Body fluids are a common and important type of forensic evidence. In particular, the identification of menstrual blood stains is often a key step during the investigation of rape cases. Here, we report on the application of near-infrared Raman microspectroscopy for differentiating menstrual blood from peripheral blood. We observed that the menstrual and peripheral blood samples have similar but distinct Raman spectra. Advanced statistical analysis of the multiple Raman spectra that were automatically (Raman mapping) acquired from the 40 dried blood stains (20 donors for each group) allowed us to build classification model with maximum (100%) sensitivity and specificity. We also demonstrated that despite certain common constituents, menstrual blood can be readily distinguished from vaginal fluid. All of the classification models were verified using cross-validation methods. The proposed method overcomes the problems associated with currently used biochemical methods, which are destructive, time consuming and expensive.

摘要

体液是一种常见且重要的法医证据类型。特别是,鉴定月经血斑通常是强奸案件调查中的关键步骤。在这里,我们报告了近红外拉曼微光谱在区分月经血和外周血方面的应用。我们观察到月经血和外周血样本具有相似但不同的拉曼光谱。对从 40 个干燥血斑(每组 20 个供体)自动采集的多个拉曼光谱(拉曼映射)进行的高级统计分析,使我们能够构建具有最大(100%)灵敏度和特异性的分类模型。我们还证明,尽管存在某些共同成分,但月经血可以很容易地与阴道分泌物区分开来。所有的分类模型都使用交叉验证方法进行了验证。该方法克服了目前使用的生化方法存在的问题,这些方法具有破坏性、耗时和昂贵的缺点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验