Center for Computational Diagnostics, IU School of Medicine, Indianapolis, IN, USA.
BMC Bioinformatics. 2012;13 Suppl 16(Suppl 16):S10. doi: 10.1186/1471-2105-13-S16-S10. Epub 2012 Nov 5.
Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples simultaneously. The quality of a heat map can be vastly improved by understanding the options available to display and organize the data in the heat map. This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characteristics of the data into the image. First, the concepts used to guide the creating of heat maps are demonstrated. Then, these concepts are applied to two types of analysis: visualizing spectral features across biological samples, and presenting the results of tests of statistical significance. For all examples we provide details of computer code in the open-source statistical programming language R, which can be used for biologists and clinicians with little statistical background. Heat maps are a useful tool for presenting quantitative proteomic data organized in a matrix format. Understanding and optimizing the parameters used to create the heat map can vastly improve both the appearance and the interoperation of heat map data.
数据可视化在解释蛋白质组学实验的实验结果方面起着至关重要的作用。热图在这项任务中特别有用,因为它们允许我们同时找到蛋白质和生物样本之间的定量模式。通过了解可用的选项来显示和组织热图中的数据,可以大大提高热图的质量。本教程通过将数据的已知特征纳入图像,说明如何为蛋白质组学数据优化热图。首先,演示了用于指导热图创建的概念。然后,将这些概念应用于两种类型的分析:可视化跨生物样本的光谱特征,以及呈现统计显着性检验的结果。对于所有示例,我们都在开放源代码统计编程语言 R 中提供了计算机代码的详细信息,该语言可供具有较少统计背景的生物学家和临床医生使用。热图是一种用于呈现以矩阵格式组织的定量蛋白质组学数据的有用工具。理解和优化创建热图所用的参数可以大大提高热图数据的外观和交互操作。