Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biochemistry, Ghent University, Belgium; Bioinformatics Institute Ghent, Ghent University, Belgium.
VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biochemistry, Ghent University, Belgium; Bioinformatics Institute Ghent, Ghent University, Belgium.
J Proteomics. 2018 Jan 16;171:23-36. doi: 10.1016/j.jprot.2017.04.004. Epub 2017 Apr 5.
UNLABELLED: Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). SIGNIFICANCE: The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments.
未标记的:无标记的鸟枪法蛋白质组学常用于评估蛋白质组。然而,从大量生成的数据中提取相关信息仍然很困难。本教程提供了分析定量蛋白质组学数据的坚实基础。我们提供了关键的统计概念,帮助研究人员设计蛋白质组学实验,并展示了如何使用我们最近的免费和开源 R 包 MSqRob 分析定量蛋白质组学数据,该包是为了实现 Goeminne 等人描述的肽级稳健脊回归方法而开发的,用于相对蛋白质定量。MSqRob 可以处理几乎任何实验蛋白质组学设计,并按统计显著性对蛋白质进行排序。此外,其图形用户界面和交互式诊断图提供了易于检查的功能,还可以检测数据中的异常和数据分析中的缺陷,从而可以更深入地评估结果的有效性,并对实验设计进行严格审查。我们的教程讨论了具有简单和更复杂设计的无标记 MS 基定量蛋白质组学实验的交互式预处理、数据分析和可视化。我们提供了在 GitHub 上以 bash 模式运行分析的记录良好的脚本,从而可以将 MSqRob 集成到集群环境中的自动化管道中(https://github.com/statOmics/MSqRob)。
意义:本教程中概述的概念有助于设计更好的实验,并更适当地分析产生的数据。使用 MSqRob 图形用户界面的两个案例研究将有助于更广泛地采用先进的基于肽的模型,从而在蛋白质组学领域实现更高质量的数据分析工作流程和更可重复的结果。我们还为有经验的用户提供了记录良好的脚本,旨在在集群环境中自动化 MSqRob。
BMC Bioinformatics. 2008-12-16
Mol Cell Proteomics. 2020-7
BMC Bioinformatics. 2014-11-25
BMC Bioinformatics. 2008-12-9
Methods Mol Biol. 2010
Nat Commun. 2025-8-6
Proc Natl Acad Sci U S A. 2025-6-17
Commun Med (Lond). 2025-3-3
Wellcome Open Res. 2024-12-24