Northwestern University, Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, Illinois 60208, USA.
ACS Nano. 2012 Dec 21;6(12):10667-75. doi: 10.1021/nn3049957. Epub 2012 Dec 4.
Nanocrystalline biological apatites constitute the mineral phase of vertebrate bone and teeth. Beyond their central importance to the mechanical function of our skeleton, their extraordinarily large surface acts as the most important ion exchanger for essential and toxic ions in our body. However, the nanoscale structural and chemical complexity of apatite-based mineralized tissues is a formidable challenge to quantitative imaging. For example, even energy-filtered electron microscopy is not suitable for detection of small quantities of low atomic number elements typical for biological materials. Herein we show that laser-pulsed atom probe tomography, a technique that combines subnanometer spatial resolution with unbiased chemical sensitivity, is uniquely suited to the task. Common apatite end members share a number of features, but can clearly be distinguished by their spectrometric fingerprint. This fingerprint and the formation of molecular ions during field evaporation can be explained based on the chemistry of the apatite channel ion. Using end members for reference, we are able to interpret the spectra of bone and dentin samples, and generate the first three-dimensional reconstruction of 1.2 × 10(7) atoms in a dentin sample. The fibrous nature of the collagenous organic matrix in dentin is clearly recognizable in the reconstruction. Surprisingly, some fibers show selectivity in binding for sodium ions over magnesium ions, implying that an additional, chemical level of hierarchy is necessary to describe dentin structure. Furthermore, segregation of inorganic ions or small organic molecules to homophase interfaces (grain boundaries) is not apparent. This has implications for the platelet model for apatite biominerals.
纳米级生物磷灰石构成了脊椎动物骨骼和牙齿的矿物相。除了对我们骨骼的机械功能至关重要之外,它们异常大的表面还充当了我们体内必需和有毒离子最重要的离子交换剂。然而,磷灰石基矿化组织的纳米级结构和化学复杂性对定量成像构成了巨大的挑战。例如,即使是能量过滤电子显微镜也不适合检测生物材料中典型的少量低原子序数元素。在这里,我们表明,激光脉冲原子探针断层扫描技术,一种将亚纳米空间分辨率与无偏化学灵敏度相结合的技术,非常适合这项任务。常见的磷灰石端元具有一些共同的特征,但可以通过它们的光谱指纹明显区分。该指纹和场蒸发过程中形成的分子离子可以根据磷灰石通道离子的化学性质来解释。使用端元作为参考,我们能够解释骨和牙本质样本的光谱,并生成牙本质样本中 1.2×10(7)个原子的第一个三维重建。牙本质中胶原有机基质的纤维性质在重建中清晰可见。令人惊讶的是,一些纤维对钠离子的结合具有选择性,而不是镁离子,这意味着需要额外的化学层次结构来描述牙本质结构。此外,无机离子或小分子到同相界面(晶界)的分离并不明显。这对磷灰石生物矿物质的血小板模型有影响。