ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), Mattenstrasse 26, CH-4058 Basel, Switzerland.
Metab Eng. 2013 Jan;15:144-50. doi: 10.1016/j.ymben.2012.11.003. Epub 2012 Nov 23.
Prokaryotic transcriptional regulatory elements are widely utilized building blocks for constructing regulatory genetic circuits adapted for mammalian cells and have found their way into a broad range of biotechnological applications. Prokaryotic transcriptional repressors, fused to eukaryotic transactivation or repression domains, compose the transcription factor, which binds and adjusts transcription from chimeric promoters containing the repressor-specific operator sequence. Escherichia coli and Chlamydia trachomatis share common features in the regulatory mechanism of the biosynthesis of l-tryptophan. The repressor protein TrpR of C. trachomatis regulates the trpRBA operon and the TrpR of E. coli regulates the trpEDCBA operon, both requiring l-tryptophan as a co-repressor. Fusion of these bacterial repressors to the VP16 transactivation domain of Herpes simplex virus creates synthetic transactivators that could bind and activate chimeric promoters, assembled by placing repressor-specific operator modules adjacent to a minimal promoter, in an l-tryptophan-adjustable manner. Combinations of different transactivator and promoter variants from the same or different bacterial species resulted in a multitude of regulatory systems where l-tryptophan regulation properties, background noise, and maximal gene expression levels were significantly diverse. Different l-tryptophan analogues showed diverse regulatory capacity depending on the promoter/transactivator combination. We believe the systems approach to rationally choose promoters, transactivators and inducer molecules, to obtain desired and predefined genetic expression dynamics and control profiles, will significantly advance the design of new regulatory circuits as well as improving already existing ones.
原核转录调控元件被广泛用作构建适用于哺乳动物细胞的调控遗传回路的构建模块,已在多种生物技术应用中得到应用。原核转录抑制剂与真核转录激活或抑制结构域融合,构成转录因子,该因子结合并调节包含抑制剂特异性操纵子序列的嵌合启动子的转录。大肠杆菌和沙眼衣原体在 l-色氨酸生物合成的调控机制方面具有共同特征。沙眼衣原体的 Repressor 蛋白 TrpR 调节 trpRBA 操纵子,大肠杆菌的 TrpR 调节 trpEDCBA 操纵子,两者都需要 l-色氨酸作为共抑制剂。将这些细菌抑制剂融合到单纯疱疹病毒的 VP16 转录激活结构域中,创建了合成转录激活因子,这些转录激活因子可以结合并激活嵌合启动子,通过将抑制剂特异性操纵子模块放置在最小启动子附近以 l-色氨酸可调节的方式组装。来自相同或不同细菌物种的不同转录激活子和启动子变体的组合产生了多种调控系统,其中 l-色氨酸调节特性、背景噪声和最大基因表达水平存在显著差异。不同的 l-色氨酸类似物根据启动子/转录激活子组合表现出不同的调节能力。我们相信,基于理性选择启动子、转录激活子和诱导分子的系统方法,以获得所需和预定义的遗传表达动力学和控制谱,将显著推进新调控回路的设计以及改进现有的调控回路。