Suppr超能文献

沙眼衣原体色氨酸阻遏蛋白(TrpR)与DNA相互作用的体内和体外研究。

In vivo and in vitro studies of Chlamydia trachomatis TrpR:DNA interactions.

作者信息

Carlson John H, Wood Heidi, Roshick Christine, Caldwell Harlan D, McClarty Grant

机构信息

Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, MT 59840, USA.

出版信息

Mol Microbiol. 2006 Mar;59(6):1678-91. doi: 10.1111/j.1365-2958.2006.05045.x.

Abstract

We previously reported that Chlamydia trachomatis expresses the genes encoding tryptophan synthase (trpBA) and the tryptophan repressor (trpR). Here we employ primer extension analysis to identify the transcriptional origins of both trpR and trpBA, allowing for the identification of the putative operator sequences for both trpR and trpBA. Moreover we demonstrate that native recombinant chlamydial TrpR binds to the predicted operator sequence upstream of trpR. A restriction endonuclease protection assay was designed and used to demonstrate that 5-fluorotryptophan was the only tryptophan analogue capable of activating binding of native recombinant chlamydial TrpR to its operator. Additionally, 5-fluorotryptophan was the only analogue that repressed expression of trpBA at a level analogous to L-tryptophan itself. Based on these findings, a mutant selection protocol was designed and a C. trachomatis isolate containing a frameshift mutation in trpR was isolated. This chlamydial mutant synthesizes a truncated TrpR protein that cannot regulate expression of trpBA and trpR in response to changes in tryptophan levels. These findings provide the first genetic proof that TrpR acts as a negative regulator of transcription in C. trachomatis.

摘要

我们之前报道过沙眼衣原体表达编码色氨酸合酶(trpBA)和色氨酸阻遏物(trpR)的基因。在此,我们采用引物延伸分析来确定trpR和trpBA的转录起始位点,从而鉴定trpR和trpBA的假定操纵序列。此外,我们证明天然重组衣原体TrpR能与trpR上游的预测操纵序列结合。设计并使用了一种限制性内切酶保护试验来证明5-氟色氨酸是唯一能够激活天然重组衣原体TrpR与其操纵序列结合的色氨酸类似物。此外,5-氟色氨酸是唯一能以与L-色氨酸本身类似的水平抑制trpBA表达的类似物。基于这些发现,设计了一种突变体筛选方案,并分离出一株在trpR中含有移码突变的沙眼衣原体菌株。这种衣原体突变体合成一种截短的TrpR蛋白,该蛋白不能根据色氨酸水平的变化调节trpBA和trpR的表达。这些发现提供了首个遗传学证据,证明TrpR在沙眼衣原体中作为转录的负调节因子发挥作用。

相似文献

1
In vivo and in vitro studies of Chlamydia trachomatis TrpR:DNA interactions.
Mol Microbiol. 2006 Mar;59(6):1678-91. doi: 10.1111/j.1365-2958.2006.05045.x.
2
Molecular mechanism of tryptophan-dependent transcriptional regulation in Chlamydia trachomatis.
J Bacteriol. 2006 Jun;188(12):4236-43. doi: 10.1128/JB.01660-05.
3
Regulation of tryptophan synthase gene expression in Chlamydia trachomatis.
Mol Microbiol. 2003 Sep;49(5):1347-59. doi: 10.1046/j.1365-2958.2003.03638.x.
7
Modulation of the Escherichia coli tryptophan repressor protein by engineered peptides.
Biochem Biophys Res Commun. 1998 Jan 6;242(1):71-8. doi: 10.1006/bbrc.1997.7905.
9
In vivo and in vitro studies of TrpR-DNA interactions.
J Mol Biol. 1996 Apr 26;258(1):37-52. doi: 10.1006/jmbi.1996.0232.
10
The tryptophan repressor sequence is highly conserved among the Enterobacteriaceae.
Nucleic Acids Res. 1994 May 25;22(10):1821-9. doi: 10.1093/nar/22.10.1821.

引用本文的文献

1
Metabolism and physiology of pathogenic bacterial obligate intracellular parasites.
Front Cell Infect Microbiol. 2024 Mar 22;14:1284701. doi: 10.3389/fcimb.2024.1284701. eCollection 2024.
2
Molecular pathogenesis of .
Front Cell Infect Microbiol. 2023 Oct 18;13:1281823. doi: 10.3389/fcimb.2023.1281823. eCollection 2023.
3
Persistence of obligate intracellular pathogens: alternative strategies to overcome host-specific stresses.
Front Cell Infect Microbiol. 2023 May 22;13:1185571. doi: 10.3389/fcimb.2023.1185571. eCollection 2023.
4
Diversity of σ-Specific Promoters Contributes to Regulation of Developmental Gene Expression in Chlamydia trachomatis.
J Bacteriol. 2023 Jan 26;205(1):e0031022. doi: 10.1128/jb.00310-22. Epub 2023 Jan 4.
5
The role of tryptophan in persistence.
Front Cell Infect Microbiol. 2022 Aug 2;12:931653. doi: 10.3389/fcimb.2022.931653. eCollection 2022.
6
Identification of a GrgA-Euo-HrcA Transcriptional Regulatory Network in Chlamydia.
mSystems. 2021 Aug 31;6(4):e0073821. doi: 10.1128/mSystems.00738-21. Epub 2021 Aug 3.
9
How conquered gut microbiome-derived antimicrobial compounds and found a new home in the eye.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12136-12138. doi: 10.1073/pnas.1907647116. Epub 2019 Jun 4.
10
Ammonia generation by tryptophan synthase drives a key genetic difference between genital and ocular isolates.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12468-12477. doi: 10.1073/pnas.1821652116. Epub 2019 May 16.

本文引用的文献

1
Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis.
Annu Rev Genet. 2005;39:47-68. doi: 10.1146/annurev.genet.39.073003.093745.
2
Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp.
Antimicrob Agents Chemother. 2005 Jul;49(7):2865-73. doi: 10.1128/AAC.49.7.2865-2873.2005.
3
Rifampin-resistant RNA polymerase mutants of Chlamydia trachomatis remain susceptible to the ansamycin rifalazil.
Antimicrob Agents Chemother. 2005 Mar;49(3):1120-6. doi: 10.1128/AAC.49.3.1120-1126.2005.
4
Emergence of resistance to rifampin and rifalazil in Chlamydophila pneumoniae and Chlamydia trachomatis.
Antimicrob Agents Chemother. 2005 Mar;49(3):903-7. doi: 10.1128/AAC.49.3.903-907.2005.
5
Serine-to-asparagine substitution in the GyrA gene leads to quinolone resistance in moxifloxacin-exposed Chlamydia pneumoniae.
Antimicrob Agents Chemother. 2005 Jan;49(1):406-7. doi: 10.1128/AAC.49.1.406-407.2005.
6
Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene.
Antimicrob Agents Chemother. 2004 Oct;48(10):3989-95. doi: 10.1128/AAC.48.10.3989-3995.2004.
9
Mutations in a 23S rRNA gene of Chlamydia trachomatis associated with resistance to macrolides.
Antimicrob Agents Chemother. 2004 Apr;48(4):1347-9. doi: 10.1128/AAC.48.4.1347-1349.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验