Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC 20015, USA.
Science. 2012 Dec 7;338(6112):1330-3. doi: 10.1126/science.1229450. Epub 2012 Nov 22.
Magnesium oxide (MgO) is representative of the rocky materials comprising the mantles of terrestrial planets, such that its properties at high temperatures and pressures reflect the nature of planetary interiors. Shock-compression experiments on MgO to pressures of 1.4 terapascals (TPa) reveal a sequence of two phase transformations: from B1 (sodium chloride) to B2 (cesium chloride) crystal structures above 0.36 TPa, and from electrically insulating solid to metallic liquid above 0.60 TPa. The transitions exhibit large latent heats that are likely to affect the structure and evolution of super-Earths. Together with data on other oxide liquids, we conclude that magmas deep inside terrestrial planets can be electrically conductive, enabling magnetic field-producing dynamo action within oxide-rich regions and blurring the distinction between planetary mantles and cores.
氧化镁 (MgO) 是构成类地行星地幔的岩石物质的代表,因此它在高温高压下的性质反映了行星内部的性质。对氧化镁进行的压力高达 1.4 太帕斯卡 (TPa) 的冲击压缩实验揭示了两个相转变序列:在 0.36 TPa 以上从 B1(氯化钠)到 B2(氯化铯)晶体结构,以及在 0.60 TPa 以上从电绝缘固体到金属液体。这些转变表现出很大的潜热,这可能会影响超地球的结构和演化。结合其他氧化物液体的数据,我们得出结论,地行星深处的岩浆可以是导电的,从而在富含氧化物的区域内产生产生磁场的发电机作用,并模糊了行星地幔和地核之间的区别。