Suppr超能文献

嗓音产生的体外实验研究。

In vitro experimental investigation of voice production.

作者信息

Kniesburges Stefan, Thomson Scott L, Barney Anna, Triep Michael, Sidlof Petr, Horáčcek Jaromír, Brücker Christoph, Becker Stefan

机构信息

Institute of Process Maschinery and Systems Engineering, University Erlangen-Nuremberg, Cauerstr. 4, 91058 Erlangen, Germany, .

出版信息

Curr Bioinform. 2011 Sep 1;6(3):305-322. doi: 10.2174/157489311796904637.

Abstract

The process of human phonation involves a complex interaction between the physical domains of structural dynamics, fluid flow, and acoustic sound production and radiation. Given the high degree of nonlinearity of these processes, even small anatomical or physiological disturbances can significantly affect the voice signal. In the worst cases, patients can lose their voice and hence the normal mode of speech communication. To improve medical therapies and surgical techniques it is very important to understand better the physics of the human phonation process. Due to the limited experimental access to the human larynx, alternative strategies, including artificial vocal folds, have been developed. The following review gives an overview of experimental investigations of artificial vocal folds within the last 30 years. The models are sorted into three groups: static models, externally driven models, and self-oscillating models. The focus is on the different models of the human vocal folds and on the ways in which they have been applied.

摘要

人类发声过程涉及结构动力学、流体流动以及声学声音产生与辐射等物理领域之间的复杂相互作用。鉴于这些过程具有高度非线性,即使是微小的解剖学或生理学扰动也会显著影响语音信号。在最糟糕的情况下,患者可能会失声,从而失去正常的言语交流方式。为了改进医学治疗方法和外科技术,更好地理解人类发声过程的物理原理非常重要。由于对人类喉部进行实验的机会有限,已经开发了包括人工声带在内的替代策略。以下综述概述了过去30年中对人工声带的实验研究。这些模型分为三组:静态模型、外部驱动模型和自激振荡模型。重点在于人类声带的不同模型以及它们的应用方式。

相似文献

1
In vitro experimental investigation of voice production.
Curr Bioinform. 2011 Sep 1;6(3):305-322. doi: 10.2174/157489311796904637.
2
[Current methods for modelling voice production].
HNO. 2016 Feb;64(2):82-90. doi: 10.1007/s00106-015-0110-x.
4
Effect of the ventricular folds in a synthetic larynx model.
J Biomech. 2017 Apr 11;55:128-133. doi: 10.1016/j.jbiomech.2017.02.021. Epub 2017 Feb 28.
5
Hemi-laryngeal Setup for Studying Vocal Fold Vibration in Three Dimensions.
J Vis Exp. 2017 Nov 25(129):55303. doi: 10.3791/55303.
6
Influence of vortical flow structures on the glottal jet location in the supraglottal region.
J Voice. 2013 Sep;27(5):531-44. doi: 10.1016/j.jvoice.2013.04.005. Epub 2013 Jul 30.
7
Experimental study of vocal-ventricular fold oscillations in voice production.
J Acoust Soc Am. 2021 Jan;149(1):271. doi: 10.1121/10.0003211.
8
Flow-structure-acoustic interaction in a human voice model.
J Acoust Soc Am. 2009 Mar;125(3):1351-61. doi: 10.1121/1.3068444.
9
Experimental analysis of the characteristics of artificial vocal folds.
J Voice. 2011 May;25(3):308-18. doi: 10.1016/j.jvoice.2009.12.002. Epub 2010 Apr 1.
10
Vibrational dynamics of vocal folds using nonlinear normal modes.
Med Eng Phys. 2013 Aug;35(8):1079-88. doi: 10.1016/j.medengphy.2012.11.002. Epub 2012 Dec 6.

引用本文的文献

1
Volumetric supraglottal jet flow field analysis in synthetic multilayered self-oscillating vocal fold model.
Exp Fluids. 2025 Jan;66(1). doi: 10.1007/s00348-024-03936-4. Epub 2024 Dec 14.
2
Synthetic, self-oscillating vocal fold models for voice production researcha).
J Acoust Soc Am. 2024 Aug 1;156(2):1283-1308. doi: 10.1121/10.0028267.
3
Three-Dimensional Printing of Ultrasoft Silicone with a Functional Stiffness Gradient.
3D Print Addit Manuf. 2024 Apr 1;11(2):435-445. doi: 10.1089/3dp.2022.0218. Epub 2024 Apr 16.
4
Drug delivery systems for wound healing treatment of upper airway injury.
Expert Opin Drug Deliv. 2024 Apr;21(4):573-591. doi: 10.1080/17425247.2024.2340653. Epub 2024 Apr 10.
5
Flow-induced oscillations of vocal-fold replicas with tuned extensibility and material properties.
Sci Rep. 2023 Dec 19;13(1):22658. doi: 10.1038/s41598-023-48080-x.
6
Computational fluid dynamics of upper airway aerodynamics for exercise-induced laryngeal obstruction: A feasibility study.
Laryngoscope Investig Otolaryngol. 2023 Aug 19;8(5):1294-1303. doi: 10.1002/lio2.1140. eCollection 2023 Oct.
7
Effect of Ligament Fibers on Dynamics of Synthetic, Self-Oscillating Vocal Folds in a Biomimetic Larynx Model.
Bioengineering (Basel). 2023 Sep 26;10(10):1130. doi: 10.3390/bioengineering10101130.
8
Aerodynamic-induced Effects of Artificial Subglottic Stenosis on Vocal Fold Model Phonatory Response.
J Voice. 2025 May;39(3):624-634. doi: 10.1016/j.jvoice.2022.11.024. Epub 2022 Dec 8.
9
Analysis of vibratory mode changes in symmetric and asymmetric activation of the canine larynx.
PLoS One. 2022 Apr 14;17(4):e0266910. doi: 10.1371/journal.pone.0266910. eCollection 2022.
10
Embedded 3D printing of multi-layer, self-oscillating vocal fold models.
J Biomech. 2021 May 24;121:110388. doi: 10.1016/j.jbiomech.2021.110388. Epub 2021 Mar 20.

本文引用的文献

2
Optimized transformation of the glottal motion into a mechanical model.
Med Eng Phys. 2011 Mar;33(2):210-7. doi: 10.1016/j.medengphy.2010.09.019. Epub 2010 Nov 5.
3
Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
J Acoust Soc Am. 2010 Nov;128(5):EL279-85. doi: 10.1121/1.3492798.
5
Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape.
J Acoust Soc Am. 2010 Aug;128(2):828-38. doi: 10.1121/1.3455838.
6
Dynamics of temporal variations in phonatory flow.
J Acoust Soc Am. 2010 Jul;128(1):372-83. doi: 10.1121/1.3365312.
7
Experimental flow study of modeled regular and irregular glottal closure types.
Logoped Phoniatr Vocol. 2010 Apr;35(1):45-50. doi: 10.3109/14015431003667652.
8
Three-dimensional nature of the glottal jet.
J Acoust Soc Am. 2010 Mar;127(3):1537-47. doi: 10.1121/1.3299202.
10
Modeling source-filter interaction in belting and high-pitched operatic male singing.
J Acoust Soc Am. 2009 Sep;126(3):1530. doi: 10.1121/1.3160296.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验