Department of Earth and Environment, Boston University, 675 Commonwealth Ave., Rm. 130, Boston, MA 02215, USA.
Plant Cell Environ. 2013 Sep;36(9):1575-85. doi: 10.1111/pce.12043. Epub 2013 Jan 3.
The potential for model-data synthesis is growing in importance as we enter an era of 'big data', greater connectivity and faster computation. Realizing this potential requires that the research community broaden its perspective about how and why they interact with models. Models can be viewed as scaffolds that allow data at different scales to inform each other through our understanding of underlying processes. Perceptions of relevance, accessibility and informatics are presented as the primary barriers to broader adoption of models by the community, while an inability to fully utilize the breadth of expertise and data from the community is a primary barrier to model improvement. Overall, we promote a community-based paradigm to model-data synthesis and highlight some of the tools and techniques that facilitate this approach. Scientific workflows address critical informatics issues in transparency, repeatability and automation, while intuitive, flexible web-based interfaces make running and visualizing models more accessible. Bayesian statistics provides powerful tools for assimilating a diversity of data types and for the analysis of uncertainty. Uncertainty analyses enable new measurements to target those processes most limiting our predictive ability. Moving forward, tools for information management and data assimilation need to be improved and made more accessible.
随着我们进入“大数据”时代,连接性更强,计算速度更快,模型数据综合的潜力变得越来越重要。要实现这一潜力,研究界需要拓宽其关于如何以及为何与模型进行交互的视角。模型可以被视为支架,通过我们对潜在过程的理解,使不同尺度的数据能够相互告知。相关性、可及性和信息学的认知被视为社区更广泛采用模型的主要障碍,而无法充分利用社区的专业知识和数据的广度则是模型改进的主要障碍。总的来说,我们倡导基于社区的模型数据综合范例,并强调一些促进这种方法的工具和技术。科学工作流程解决了透明度、可重复性和自动化方面的关键信息学问题,而直观、灵活的基于网络的界面使运行和可视化模型更加容易。贝叶斯统计为同化各种类型的数据和分析不确定性提供了强大的工具。不确定性分析使新的测量能够针对那些最限制我们预测能力的过程。展望未来,需要改进和更易于使用的信息管理和数据同化工具。