Suppr超能文献

通过空气污染控制系统残余物的直接气固碳化来隔离烟道气 CO₂。

Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

机构信息

School of Environment, Tsinghua University , 100084 Beijing, PR China.

出版信息

Environ Sci Technol. 2012 Dec 18;46(24):13545-51. doi: 10.1021/es303713a. Epub 2012 Dec 3.

Abstract

Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

摘要

采用不同组合的模拟烟道气对来自大气污染控制系统(APC)的残余物进行直接气固碳反应,以研究对 CO₂ 封存的影响。通过 X 射线衍射分析 APCr 确定了 CaClOH 的存在,通过参考强度比法计算出其最大理论 CO₂ 封存潜力为 58.13 g CO₂/kg APCr。反应机制遵循快速动力学控制过程,然后是缓慢的产物层扩散控制过程的模型。温度是直接气固碳化的关键因素,对碳化转化率和 CO₂ 封存速率都有显著影响。使用连续加热实验,很容易获得 APCr 的最佳 CO₂ 封存温度为 395°C。烟道气中的 CO₂ 含量对动力学控制过程的 CO₂ 封存速率有一定影响,但对最终碳化转化率几乎没有影响。烟道气中典型的 SO₂ 浓度不仅可以加速产物层扩散控制过程的碳化反应速率,还可以提高最终的碳化转化率。在典型的烟道气中,实现了 68.6%至 77.1%之间的最大碳化转化率。本研究证明了直接气固碳化具有快速 CO₂ 封存速率、强杂质阻力和高捕获转化率的特点,为该令人鼓舞的技术在碳捕获和储存中的应用提供了理论基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验