Suppr超能文献

通过核磁共振波谱法在活性半胱氨酸蛋白酶上绘制抑制剂结合模式图。

Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy.

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280, USA.

出版信息

Biochemistry. 2012 Dec 18;51(50):10087-98. doi: 10.1021/bi301305k. Epub 2012 Dec 10.

Abstract

Cruzain is a member of the papain/cathepsin L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We report an autoinduction methodology that provides soluble cruzain in high yields (>30 mg/L in minimal medium). These increased yields provide sufficient quantities of active enzyme for use in nuclear magnetic resonance (NMR)-based ligand mapping. Using circular dichroism and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective [(15)N]Cys, [(15)N]His, and [(13)C]Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low-molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verified that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely, covalent, noncovalent, and noninteracting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions to facilitate lead compound identification and subsequent structural studies.

摘要

克氏锥虫 cruzin 是半胱氨酸蛋白酶家族中木瓜蛋白酶/组织蛋白酶 L 家族的成员,也是引起恰加斯病的原生动物克氏锥虫的主要半胱氨酸蛋白酶。我们报告了一种自动诱导方法,该方法可以以高产量(在最小培养基中>30mg/L)提供可溶性 cruzin。这些产量的提高为使用基于核磁共振(NMR)的配体作图提供了足够数量的活性酶。使用圆二色性和 NMR 光谱,我们还研究了与共价结合的乙烯砜抑制剂(K777)结合的酶在溶液状态下的结构动力学。我们报告了与 K777 结合的 cruzin 的骨干酰胺和侧链碳化学位移分配。这些共振分配用于鉴定和映射位于底物结合口袋中的残基,包括催化 Cys25 和 His162。进行了选择性 [(15)N]Cys、[(15)N]His 和 [(13)C]Met 标记,以快速评估一组具有微摩尔结合或抑制作用的八种低分子量化合物与 cruzin 的相互作用。化学位移扰动映射验证了这 8 种化合物中的 6 种与 cruzin 在活性部位结合。为这些化合物描绘了三种不同的结合模式,即共价、非共价和非相互作用。这些结果提供了如何使用 NMR 光谱筛选化合物以快速评估酶抑制剂相互作用从而促进先导化合物鉴定和随后的结构研究的示例。

相似文献

1
Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy.
Biochemistry. 2012 Dec 18;51(50):10087-98. doi: 10.1021/bi301305k. Epub 2012 Dec 10.
2
In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi.
PLoS Negl Trop Dis. 2010 Sep 14;4(9):e825. doi: 10.1371/journal.pntd.0000825.
3
Cruzain : the path from target validation to the clinic.
Adv Exp Med Biol. 2011;712:100-15. doi: 10.1007/978-1-4419-8414-2_7.
4
Assessment of the Cruzain Cysteine Protease Reversible and Irreversible Covalent Inhibition Mechanism.
J Chem Inf Model. 2020 Mar 23;60(3):1666-1677. doi: 10.1021/acs.jcim.9b01138. Epub 2020 Mar 10.
5
Identification of a new class of nonpeptidic inhibitors of cruzain.
J Am Chem Soc. 2008 May 21;130(20):6404-10. doi: 10.1021/ja710254m. Epub 2008 Apr 25.
6
Synthesis of macrocyclic trypanosomal cysteine protease inhibitors.
Bioorg Med Chem Lett. 2008 Nov 15;18(22):5860-3. doi: 10.1016/j.bmcl.2008.06.012. Epub 2008 Jun 10.
7
Dissecting a novel allosteric mechanism of cruzain: A computer-aided approach.
PLoS One. 2019 Jan 25;14(1):e0211227. doi: 10.1371/journal.pone.0211227. eCollection 2019.
8
First quantum mechanics/molecular mechanics studies of the inhibition mechanism of cruzain by peptidyl halomethyl ketones.
Biochemistry. 2015 Jun 2;54(21):3381-91. doi: 10.1021/bi501551g. Epub 2015 May 20.
10
Development of alpha-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease.
Bioorg Med Chem. 2005 Mar 15;13(6):2141-56. doi: 10.1016/j.bmc.2004.12.053.

引用本文的文献

1
Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain.
J Venom Anim Toxins Incl Trop Dis. 2025 Feb 14;31:e20240055. doi: 10.1590/1678-9199-JVATITD-2024-0055. eCollection 2025.
2
Technologies for Direct Detection of Covalent Protein-Drug Adducts.
Pharmaceuticals (Basel). 2023 Apr 5;16(4):547. doi: 10.3390/ph16040547.
3
Inhibiting a dynamic viral protease by targeting a non-catalytic cysteine.
Cell Chem Biol. 2022 May 19;29(5):785-798.e19. doi: 10.1016/j.chembiol.2022.03.007. Epub 2022 Mar 31.
4
Peptidomimetic Vinyl Heterocyclic Inhibitors of Cruzain Effect Antitrypanosomal Activity.
J Med Chem. 2020 Mar 26;63(6):3298-3316. doi: 10.1021/acs.jmedchem.9b02078. Epub 2020 Mar 17.
5
Cruzain structures: apocruzain and cruzain bound to S-methyl thiomethanesulfonate and implications for drug design.
Acta Crystallogr F Struct Biol Commun. 2019 Jun 1;75(Pt 6):419-427. doi: 10.1107/S2053230X19006320. Epub 2019 May 13.
7
Molecular Design, Synthesis and Trypanocidal Activity of Dipeptidyl Nitriles as Cruzain Inhibitors.
PLoS Negl Trop Dis. 2015 Jul 14;9(7):e0003916. doi: 10.1371/journal.pntd.0003916. eCollection 2015.
8
Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay.
PLoS Negl Trop Dis. 2013 Aug 22;7(8):e2370. doi: 10.1371/journal.pntd.0002370. eCollection 2013.

本文引用的文献

1
Active cathepsins B, L, and S in murine and human pancreatitis.
Am J Physiol Gastrointest Liver Physiol. 2012 Oct 15;303(8):G894-903. doi: 10.1152/ajpgi.00073.2012. Epub 2012 Aug 16.
2
Cysteine cathepsins: from structure, function and regulation to new frontiers.
Biochim Biophys Acta. 2012 Jan;1824(1):68-88. doi: 10.1016/j.bbapap.2011.10.002. Epub 2011 Oct 12.
3
Trypanosoma cruzi and Chagas' Disease in the United States.
Clin Microbiol Rev. 2011 Oct;24(4):655-81. doi: 10.1128/CMR.00005-11.
4
Update in treatment of Chagas disease.
Curr Opin Infect Dis. 2011 Oct;24(5):428-34. doi: 10.1097/QCO.0b013e32834a667f.
5
Enzyme inhibition by allosteric capture of an inactive conformation.
J Mol Biol. 2011 Sep 2;411(5):999-1016. doi: 10.1016/j.jmb.2011.06.032. Epub 2011 Jun 22.
6
Cruzain : the path from target validation to the clinic.
Adv Exp Med Biol. 2011;712:100-15. doi: 10.1007/978-1-4419-8414-2_7.
7
1H, 13C and 15N resonance assignments of SARS-CoV main protease N-terminal domain.
Biomol NMR Assign. 2011 Oct;5(2):143-5. doi: 10.1007/s12104-010-9287-9. Epub 2010 Dec 23.
9
Specialized roles for cysteine cathepsins in health and disease.
J Clin Invest. 2010 Oct;120(10):3421-31. doi: 10.1172/JCI42918. Epub 2010 Oct 1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验