Laboratório de Planejamento e Desenvolvimento de Fármacos. Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa 01, CEP 66075-110, Belém, Pará, Brazil.
Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil.
J Chem Inf Model. 2020 Mar 23;60(3):1666-1677. doi: 10.1021/acs.jcim.9b01138. Epub 2020 Mar 10.
Reversible and irreversible covalent ligands are advanced cysteine protease inhibitors in the drug development pipeline. is an irreversible inhibitor of cruzain, a necessary enzyme for the survival of the () parasite, the causative agent of Chagas disease. Despite their importance, irreversible covalent inhibitors are still often avoided due to the risk of adverse effects. Herein, we replaced the vinyl sulfone group with a nitrile moiety to obtain a reversible covalent inhibitor () of cysteine protease. Then, we used advanced experimental and computational techniques to explore details of the inhibition mechanism of cruzain by reversible and irreversible inhibitors. The isothermal titration calorimetry (ITC) analysis shows that inhibition of cruzain by an irreversible inhibitor is thermodynamically more favorable than by a reversible one. The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) simulations were used to explore the mechanism of the reaction inhibition of cruzain by and . The calculated free energy profiles show that the Cys25 nucleophilic attack and His162 proton transfer occur in a single step for a reversible inhibitor and two steps for an irreversible covalent inhibitor. The hybrid QM/MM calculated free energies for the inhibition reaction correspond to -26.7 and -5.9 kcal mol for and at the MP2/MM level, respectively. These results indicate that the Δ of the reaction is very negative for the process involving , consequently, the covalent adduct cannot revert to a noncovalent protein-ligand complex, and its binding tends to be irreversible. Overall, the present study provides insights into a covalent inhibition mechanism of cysteine proteases.
可逆和不可逆的共价配体是药物开发管线上的先进半胱氨酸蛋白酶抑制剂。 是一种不可逆的克氏锥虫抑制剂,克氏锥虫是恰加斯病病原体()寄生虫生存所必需的酶。尽管它们很重要,但由于不良反应的风险,仍然经常避免使用不可逆的共价抑制剂。在此,我们用氰基取代乙烯砜基团,得到半胱氨酸蛋白酶的可逆共价抑制剂()。然后,我们使用先进的实验和计算技术来探索克氏锥虫的可逆和不可逆抑制剂的抑制机制细节。等温滴定量热法(ITC)分析表明,不可逆抑制剂对克氏锥虫的抑制在热力学上比可逆抑制剂更有利。混合量子力学/分子力学(QM/MM)和分子动力学(MD)模拟用于探索克氏锥虫与和反应抑制的机制。计算的自由能曲线表明,对于可逆抑制剂,半胱氨酸 25 的亲核攻击和组氨酸 162 的质子转移发生在单个步骤中,而对于不可逆共价抑制剂则发生在两个步骤中。在 MP2/MM 水平下,QM/MM 计算的抑制反应的自由能分别为 -26.7 和 -5.9 kcal/mol。这些结果表明,对于涉及的反应,Δ非常负,因此,共价加合物不能回复到非共价的蛋白质-配体复合物,其结合趋于不可逆。总体而言,本研究提供了对半胱氨酸蛋白酶共价抑制机制的深入了解。