Suppr超能文献

在缺氧挑战期间和之后,在缺乏或缺乏 S-亚硝基谷胱甘肽还原酶的清醒小鼠中进行通气反应。

Ventilatory responses during and following exposure to a hypoxic challenge in conscious mice deficient or null in S-nitrosoglutathione reductase.

机构信息

Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.

出版信息

Respir Physiol Neurobiol. 2013 Feb 1;185(3):571-81. doi: 10.1016/j.resp.2012.11.009. Epub 2012 Nov 24.

Abstract

Exposure to a hypoxic challenge increases ventilation in wild-type (WT) mice that diminish during the challenge (roll-off) whereas return to room air causes an increase in ventilation (short-term facilitation, STF). Since plasma and tissue levels of ventilatory excitant S-nitrosothiols such as S-nitrosoglutathione (GSNO) increase during hypoxia, this study examined whether (1) the initial increase in ventilation is due to generation of GSNO, (2) roll-off is due to increased activity of the GSNO degrading enzyme, GSNO reductase (GSNOR), and (3) STF is limited by GSNOR activity. Initial ventilatory responses to hypoxic challenge (10% O(2), 90% N(2)) were similar in WT, GSNO+/- and GSNO-/- mice. These responses diminished markedly during hypoxic challenge in WT mice whereas there was minimal roll-off in GSNOR+/- and GSNOR-/- mice. Finally, STF was greater in GSNOR+/- and GSNOR-/- mice than in WT mice (especially females). This study suggests that GSNOR degradation of GSNO is a vital step in the expression of ventilatory roll-off and that GSNOR suppresses STF.

摘要

暴露于低氧挑战会增加野生型(WT)小鼠的通气量,而在挑战过程中(滚动下降)通气量会减少,而返回室内空气会导致通气量增加(短期易化,STF)。由于血浆和组织中通气兴奋物 S-亚硝基硫醇(如 S-亚硝基谷胱甘肽(GSNO))的水平在低氧时会增加,因此本研究探讨了(1)初始通气增加是否归因于 GSNO 的产生,(2)滚动下降是否归因于 GSNO 降解酶 GSNO 还原酶(GSNOR)活性的增加,以及(3)STF 是否受到 GSNOR 活性的限制。WT、GSNO+/-和 GSNO-/-小鼠对低氧挑战(10% O(2),90% N(2))的初始通气反应相似。这些反应在 WT 小鼠的低氧挑战过程中明显减弱,而 GSNOR+/-和 GSNOR-/-小鼠的滚动下降很小。最后,GSNOR+/-和 GSNOR-/-小鼠的 STF 比 WT 小鼠(尤其是雌性)更大。本研究表明,GSNO 的 GSNOR 降解是通气滚动下降表达的关键步骤,而 GSNOR 抑制 STF。

相似文献

1
Ventilatory responses during and following exposure to a hypoxic challenge in conscious mice deficient or null in S-nitrosoglutathione reductase.
Respir Physiol Neurobiol. 2013 Feb 1;185(3):571-81. doi: 10.1016/j.resp.2012.11.009. Epub 2012 Nov 24.
2
Hypoxia-induced changes in protein s-nitrosylation in female mouse brainstem.
Am J Respir Cell Mol Biol. 2015 Jan;52(1):37-45. doi: 10.1165/rcmb.2013-0359OC.
3
Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation.
Respir Physiol Neurobiol. 2013 Feb 1;185(3):497-505. doi: 10.1016/j.resp.2012.11.010. Epub 2012 Nov 24.
4
O-Aminobenzoyl-S-nitrosoglutathione: A fluorogenic, cell permeable, pseudo-substrate for S-nitrosoglutathione reductase.
Free Radic Biol Med. 2017 Jul;108:445-451. doi: 10.1016/j.freeradbiomed.2017.04.008. Epub 2017 Apr 15.
5
Increased nitrosoglutathione reductase activity in hypoxic pulmonary hypertension in mice.
J Pharmacol Sci. 2010;113(1):32-40. doi: 10.1254/jphs.09279fp. Epub 2010 Apr 22.
6
AKR1A1 is a novel mammalian -nitroso-glutathione reductase.
J Biol Chem. 2019 Nov 29;294(48):18285-18293. doi: 10.1074/jbc.RA119.011067. Epub 2019 Oct 23.
8
Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development.
Nitric Oxide. 2017 Aug 1;68:68-76. doi: 10.1016/j.niox.2016.12.002. Epub 2016 Dec 8.
10
The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy.
Crit Rev Biochem Mol Biol. 2017 Jun;52(3):340-354. doi: 10.1080/10409238.2017.1304353. Epub 2017 Apr 10.

引用本文的文献

2
Male histone deacetylase 6 (HDAC6) knockout mice have enhanced ventilatory responses to hypoxic challenge.
Front Physiol. 2024 Feb 6;14:1332810. doi: 10.3389/fphys.2023.1332810. eCollection 2023.
4
L-cysteine ethyl ester prevents and reverses acquired physical dependence on morphine in male Sprague Dawley rats.
Front Pharmacol. 2023 Dec 4;14:1303207. doi: 10.3389/fphar.2023.1303207. eCollection 2023.
5
Loss of ganglioglomerular nerve input to the carotid body impacts the hypoxic ventilatory response in freely-moving rats.
Front Physiol. 2023 Mar 16;14:1007043. doi: 10.3389/fphys.2023.1007043. eCollection 2023.
6
Hypercapnic signaling influences hypoxic signaling in the control of breathing in C57BL6 mice.
J Appl Physiol (1985). 2023 May 1;134(5):1188-1206. doi: 10.1152/japplphysiol.00548.2022. Epub 2023 Mar 9.
10
S-Nitroso-l-cysteine and ventilatory drive: A pediatric perspective.
Pediatr Pulmonol. 2022 Oct;57(10):2291-2297. doi: 10.1002/ppul.26036. Epub 2022 Jul 24.

本文引用的文献

1
Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation.
Respir Physiol Neurobiol. 2013 Feb 1;185(3):497-505. doi: 10.1016/j.resp.2012.11.010. Epub 2012 Nov 24.
2
Nitric oxide signaling in hypoxia.
J Mol Med (Berl). 2012 Mar;90(3):217-31. doi: 10.1007/s00109-012-0880-5. Epub 2012 Feb 18.
3
Quantification of cysteinyl S-nitrosylation by fluorescence in unbiased proteomic studies.
Biochemistry. 2011 Jun 28;50(25):5601-14. doi: 10.1021/bi200008b. Epub 2011 Jun 7.
4
A modest decrease in endothelial NOS in mice comparable to that associated with human NOS3 variants exacerbates diabetic nephropathy.
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2070-5. doi: 10.1073/pnas.1018766108. Epub 2011 Jan 18.
6
Gender differences in S-nitrosoglutathione reductase activity in the lung.
PLoS One. 2010 Nov 16;5(11):e14007. doi: 10.1371/journal.pone.0014007.
7
Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats.
Am J Respir Crit Care Med. 2010 Nov 1;182(9):1184-94. doi: 10.1164/rccm.201001-0047OC. Epub 2010 Jul 9.
9
Increased nitrosoglutathione reductase activity in hypoxic pulmonary hypertension in mice.
J Pharmacol Sci. 2010;113(1):32-40. doi: 10.1254/jphs.09279fp. Epub 2010 Apr 22.
10
The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis.
Physiol Rev. 2010 Apr;90(2):675-754. doi: 10.1152/physrev.00012.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验