Suppr超能文献

缺氧诱导的清醒小鼠通气反应:通气下降和促进作用的性别差异。

Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation.

机构信息

Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.

出版信息

Respir Physiol Neurobiol. 2013 Feb 1;185(3):497-505. doi: 10.1016/j.resp.2012.11.010. Epub 2012 Nov 24.

Abstract

The aim of this study was to compare the ventilatory responses of C57BL6 female and male mice during a 15 min exposure to a hypoxic-hypercapnic (H-H) or a hypoxic (10% O(2), 90% N(2)) challenge and subsequent return to room air. The ventilatory responses to H-H were similar in males and females whereas there were pronounced gender differences in the ventilatory responses during and following hypoxic challenge. In males, the hypoxic response included initial increases in minute volume via increases in tidal volume and frequency of breathing. These responses declined substantially (roll-off) during hypoxic exposure. Upon return to room-air, relatively sustained increases in these ventilatory parameters (short-term potentiation) were observed. In females, the initial responses to hypoxia were similar to those in males whereas roll-off was greater and post-hypoxia facilitation was smaller than in males. The marked differences in ventilatory roll-off and post-hypoxia facilitation between female and male C57BL6 mice provide evidence that gender is of vital importance to ventilatory control.

摘要

本研究旨在比较 C57BL6 雌性和雄性小鼠在 15 分钟暴露于低氧-高碳酸(H-H)或低氧(10% O(2),90% N(2))挑战以及随后返回室内空气时的通气反应。男性和女性的 H-H 通气反应相似,而在低氧挑战期间和之后,通气反应存在明显的性别差异。在男性中,低氧反应包括通过潮气量和呼吸频率增加初始分钟通气量的增加。这些反应在低氧暴露期间大幅下降(衰减)。在返回室内空气时,观察到这些通气参数的相对持续增加(短期增强)。在女性中,初始低氧反应与男性相似,而衰减更大,低氧后促进作用小于男性。C57BL6 雌性和雄性小鼠通气衰减和低氧后促进作用的显著差异表明,性别对通气控制至关重要。

相似文献

1
Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation.
Respir Physiol Neurobiol. 2013 Feb 1;185(3):497-505. doi: 10.1016/j.resp.2012.11.010. Epub 2012 Nov 24.
2
Ventilatory responses during and following exposure to a hypoxic challenge in conscious mice deficient or null in S-nitrosoglutathione reductase.
Respir Physiol Neurobiol. 2013 Feb 1;185(3):571-81. doi: 10.1016/j.resp.2012.11.009. Epub 2012 Nov 24.
5
Enhanced non-eupneic breathing following hypoxic, hypercapnic or hypoxic-hypercapnic gas challenges in conscious mice.
Respir Physiol Neurobiol. 2014 Dec 1;204:147-59. doi: 10.1016/j.resp.2014.09.006. Epub 2014 Sep 19.
6
Carotid sinus nerve transection abolishes the facilitation of breathing that occurs upon cessation of a hypercapnic gas challenge in male mice.
J Appl Physiol (1985). 2021 Aug 1;131(2):821-835. doi: 10.1152/japplphysiol.01031.2020. Epub 2021 Jul 8.
8
Intermittent hypercapnic hypoxia during sleep does not induce ventilatory long-term facilitation in healthy males.
J Appl Physiol (1985). 2017 Sep 1;123(3):534-543. doi: 10.1152/japplphysiol.01005.2016. Epub 2017 Jun 15.
10
Hypercapnic signaling influences hypoxic signaling in the control of breathing in C57BL6 mice.
J Appl Physiol (1985). 2023 May 1;134(5):1188-1206. doi: 10.1152/japplphysiol.00548.2022. Epub 2023 Mar 9.

引用本文的文献

1
Reversal of morphine-induced respiratory depression with the µ-opioid receptor antagonist naloxonazine engenders excitation and instability of breathing.
Am J Physiol Lung Cell Mol Physiol. 2025 Jul 1;329(1):L97-L111. doi: 10.1152/ajplung.00045.2025. Epub 2025 May 14.
2
The cystathionine-γ-lyase inhibitor DL-propargylglycine augments the ability of L-cysteine ethyl ester to overcome the adverse effects of morphine on breathing.
Am J Physiol Lung Cell Mol Physiol. 2025 Jun 1;328(6):L809-L825. doi: 10.1152/ajplung.00003.2025. Epub 2025 Mar 18.
3
Sex and genotype influence respiratory function under hypoxic and hypoxic-hypercapnic conditions.
J Neurophysiol. 2024 Jul 1;132(1):23-33. doi: 10.1152/jn.00255.2023. Epub 2024 May 15.
5
Male histone deacetylase 6 (HDAC6) knockout mice have enhanced ventilatory responses to hypoxic challenge.
Front Physiol. 2024 Feb 6;14:1332810. doi: 10.3389/fphys.2023.1332810. eCollection 2023.
6
Loss of ganglioglomerular nerve input to the carotid body impacts the hypoxic ventilatory response in freely-moving rats.
Front Physiol. 2023 Mar 16;14:1007043. doi: 10.3389/fphys.2023.1007043. eCollection 2023.
7
Hypercapnic signaling influences hypoxic signaling in the control of breathing in C57BL6 mice.
J Appl Physiol (1985). 2023 May 1;134(5):1188-1206. doi: 10.1152/japplphysiol.00548.2022. Epub 2023 Mar 9.

本文引用的文献

1
Ventilatory responses during and following exposure to a hypoxic challenge in conscious mice deficient or null in S-nitrosoglutathione reductase.
Respir Physiol Neurobiol. 2013 Feb 1;185(3):571-81. doi: 10.1016/j.resp.2012.11.009. Epub 2012 Nov 24.
2
Central respiratory chemoreception.
J Comp Neurol. 2010 Oct 1;518(19):3883-906. doi: 10.1002/cne.22435.
3
Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats.
Am J Respir Crit Care Med. 2010 Nov 1;182(9):1184-94. doi: 10.1164/rccm.201001-0047OC. Epub 2010 Jul 9.
4
Functional anatomical evidence for respiratory rhythmogenic function of endogenous bursters in rat medulla.
J Neurosci. 2010 Jun 23;30(25):8383-92. doi: 10.1523/JNEUROSCI.5510-09.2010.
5
The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis.
Physiol Rev. 2010 Apr;90(2):675-754. doi: 10.1152/physrev.00012.2009.
8
Pathophysiology of sleep apnea.
Physiol Rev. 2010 Jan;90(1):47-112. doi: 10.1152/physrev.00043.2008.
9
Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+.
J Appl Physiol (1985). 2010 Apr;108(4):989-94. doi: 10.1152/japplphysiol.01059.2009. Epub 2010 Jan 14.
10
The neuronal control of hypoxic ventilation: erythropoietin and sexual dimorphism.
Ann N Y Acad Sci. 2009 Oct;1177:151-61. doi: 10.1111/j.1749-6632.2009.05028.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验