Division of Chemistry and Chemical Engineering, Materials and Process Simulation Center, MC 139-74, California Institute of Technology, Pasadena, California 91125, USA.
Protein Sci. 2013 Jan;22(1):101-13. doi: 10.1002/pro.2192.
There is considerable interest in determining the activation mechanism of G protein-coupled receptors (GPCRs), one of the most important types of proteins for intercellular signaling. Recently, it was demonstrated for the cannabinoid CB1 GPCR, that a single mutation T210A could make CB1 completely inactive whereas T210I makes it essentially constitutively active. To obtain an understanding of this dramatic dependence of activity on mutation, we used first-principles-based methods to predict the ensemble of low-energy seven-helix conformations for the wild-type (WT) and mutants (T210A and T210I). We find that the transmembrane (TM) helix packings depend markedly on these mutations, leading for T210A to both TM3+TM6 and TM2+TM6 salt-bridge couplings in the cytoplasmic face that explains the inactivity of this mutant. In contrast T210I has no such couplings across the receptor explaining the ease in activating this mutant. WT has just the TM3+TM6 coupling, known to be broken upon GPCR activation. To test this hypothesis on activity, we predicted double mutants that would convert the inactive mutant to normal activity and then confirmed this experimentally. This CB1 activation mechanism, or one similar to it, is expected to play a role in other constitutively active GPCRs as well.
人们对于 G 蛋白偶联受体 (GPCR) 的激活机制非常感兴趣,GPCR 是细胞间信号传递最重要的蛋白之一。最近,研究表明大麻素 CB1 GPCR 中的单一突变 T210A 可以使 CB1 完全失活,而 T210I 则使其基本处于持续激活状态。为了了解这种活性对突变的强烈依赖性,我们使用基于第一性原理的方法预测了野生型 (WT) 和突变体 (T210A 和 T210I) 的低能七螺旋构象的集合。我们发现,跨膜 (TM) 螺旋包装明显依赖于这些突变,导致 T210A 在细胞质侧形成 TM3+TM6 和 TM2+TM6 盐桥偶联,这解释了该突变体的无活性。相比之下,T210I 在受体中没有这样的偶联,这解释了激活这种突变体的容易性。WT 只有 TM3+TM6 偶联,已知在 GPCR 激活时会被打破。为了在活性上验证这一假设,我们预测了将无活性突变体转化为正常活性的双突变体,然后通过实验证实了这一点。这种 CB1 激活机制,或与之类似的机制,预计也会在其他持续激活的 GPCR 中发挥作用。