Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA.
Proteomics Clin Appl. 2013 Jan;7(1-2):171-80. doi: 10.1002/prca.201200091.
The emerging field of chemo- and pharmacoproteomics studies the mechanisms of action of bioactive molecules in a systems pharmacology context. In contrast to traditional drug discovery, pharmacoproteomics integrates the mechanism of a drug's action, its side effects including toxicity, and the discovery of new drug targets in a single approach. Thus, it determines early favorable (e.g. multiple kinase target in cancer drugs) and unfavorable (e.g. side effects) polypharmacology. Target profiling is accomplished using either active site-labeling probes or immobilized drugs. This strategy identifies direct targets and has in fact enabled even the determination of binding curves and half maximum inhibitory concentrations of these targets. In addition, the enrichment greatly reduces the complexity of the proteome to be analyzed by quantitative MS. Complementary to these approaches, global proteomics profiling studying drug treatement-induced changes in protein expression levels and/or post-translational modification status have started to become possible mostly due to significant improvements in instrumentation. Particularly, when using multidimensional separations, a considerable proteome depth of up to 10 000 proteins can be achieved with current state-of-the-art mass spectrometers and bioinformatics tools. In summary, chemo- and pharmacoproteomics has already contributed significantly to the identification of novel drug targets and their mechanisms of action(s). Aided by further technological advancements, this interdisciplinary approach will likely be used more broadly in the future.
化学生物学和药物蛋白质组学是一个新兴的研究领域,它在系统药理学的背景下研究生物活性分子的作用机制。与传统的药物发现相比,药物蛋白质组学将药物作用的机制、其副作用(包括毒性)以及新药物靶点的发现整合在一种方法中。因此,它决定了早期的有利(例如癌症药物中的多个激酶靶点)和不利(例如副作用)的多药理学。靶标分析是通过活性位点标记探针或固定化药物来完成的。这种策略可以确定直接靶标,实际上甚至可以确定这些靶标的结合曲线和半最大抑制浓度。此外,这种富集极大地降低了通过定量 MS 分析的蛋白质组的复杂性。作为这些方法的补充,由于仪器的显著改进,开始有可能进行全球蛋白质组学分析,以研究药物处理对蛋白质表达水平和/或翻译后修饰状态的影响。特别是,当使用多维分离时,当前最先进的质谱仪和生物信息学工具可以达到多达 10000 种蛋白质的相当大的蛋白质组深度。总之,化学生物学和药物蛋白质组学已经为鉴定新的药物靶点及其作用机制做出了重要贡献。在进一步的技术进步的帮助下,这种跨学科的方法在未来可能会得到更广泛的应用。