Suppr超能文献

可扩展合成具有高速率性能的 TiO2/石墨烯纳米结构复合材料用于锂离子电池。

Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries.

机构信息

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo, Zhejiang 315201, PR China.

出版信息

ACS Nano. 2012 Dec 21;6(12):11035-43. doi: 10.1021/nn304725m. Epub 2012 Nov 29.

Abstract

A simple and scalable method is developed to synthesize TiO(2)/graphene nanostructured composites as high-performance anode materials for Li-ion batteries using hydroxyl titanium oxalate (HTO) as the intermediate for TiO(2). With assistance of a surfactant, amorphous HTO can condense as a flower-like nanostructure on graphene oxide (GO) sheets. By calcination, the HTO/GO nanocomposite can be converted to TiO(2)/graphene nanocomposite with well preserved flower-like nanostructure. In the composite, TiO(2) nanoparticles with an ultrasmall size of several nanometers construct the porous flower-like nanostructure which strongly attached onto conductive graphene nanosheets. The TiO(2)/graphene nanocomposite is able to deliver a capacity of 230 mA h g(-1) at 0.1 C (corresponding to a current density of 17 mA g(-1)), and demonstrates superior high-rate charge-discharge capability and cycling stability at charge/discharge rates up to 50 C in a half cell configuration. Full cell measurement using the TiO(2)/graphene as the anode material and spinel LiMnO(2) as the cathode material exhibit good high-rate performance and cycling stability, indicating that the TiO(2)/graphene nanocomposite has a practical application potential in advanced Li-ion batteries.

摘要

开发了一种简单且可扩展的方法,使用羟基钛草酸酯(HTO)作为 TiO2 的中间体,合成 TiO2/石墨烯纳米结构复合材料作为高性能锂离子电池的阳极材料。在表面活性剂的辅助下,无定形 HTO 可以在氧化石墨烯(GO)片上凝结成花状纳米结构。通过煅烧,HTO/GO 纳米复合材料可以转化为具有良好保留花状纳米结构的 TiO2/石墨烯纳米复合材料。在该复合材料中,具有数纳米超小尺寸的 TiO2 纳米颗粒构成了多孔花状纳米结构,该结构强烈附着在导电石墨烯纳米片上。TiO2/石墨烯纳米复合材料在 0.1 C(相当于 17 mA g-1 的电流密度)时可提供 230 mA h g-1 的容量,并且在半电池配置下以高达 50 C 的充放电速率展示出优异的高倍率充放电性能和循环稳定性。使用 TiO2/石墨烯作为阳极材料和尖晶石 LiMnO2 作为阴极材料的全电池测量显示出良好的高倍率性能和循环稳定性,表明 TiO2/石墨烯纳米复合材料在先进的锂离子电池中有实际应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验