Suppr超能文献

用于稳定电池阳极的金属氧化物与柱状石墨复合材料的赝电容及动力学增强

Pseudo-capacitive and kinetic enhancement of metal oxides and pillared graphite composite for stabilizing battery anodes.

作者信息

Luo Yongguang, Wang Lingling, Li Qian, Choi Jungsue, Park G Hwan, Zheng Zhiyong, Liu Yang, Wang Hongdan, Lee Hyoyoung

机构信息

Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea.

BYD Company Ltd., 1301 Shenshan Road, Pingshan District, Shenzhen, 518122, China.

出版信息

Sci Rep. 2022 Jul 15;12(1):12079. doi: 10.1038/s41598-022-15789-0.

Abstract

Nanostructured TiO and SnO possess reciprocal energy storage properties, but challenges remain in fully exploiting their complementary merits. Here, this study reports a strategy of chemically suturing metal oxides in a cushioning graphite network (SnO[O]rTiO-PGN) in order to construct an advanced and reliable energy storage material with a unique configuration for energy storage processes. The suggested SnO[O]rTiO-PGN configuration provides sturdy interconnections between phases and chemically wraps the SnO nanoparticles around disordered TiO (SnO[O]rTiO) into a cushioning plier-linked graphite network (PGN) system with nanometer interlayer distance (~ 1.2 nm). Subsequently, the SnO[O]rTiO-PGN reveals superior lithium-ion storage performance compared to all 16 of the control group samples and commercial graphite anode (keeps around 600 mAh g at 100 mA g after 250 cycles). This work clarifies the enhanced pseudo-capacitive contribution and the major diffusion-controlled energy storage kinetics. The validity of preventing volume expansion is demonstrated through the visualized image evidence of electrode integrity.

摘要

纳米结构的二氧化钛(TiO)和氧化锡(SnO)具有互补的储能特性,但在充分发挥它们的互补优势方面仍存在挑战。在此,本研究报告了一种在缓冲石墨网络(SnO[O]rTiO-PGN)中化学缝合金属氧化物的策略,以构建一种先进且可靠的储能材料,该材料具有用于储能过程的独特结构。所提出的SnO[O]rTiO-PGN结构在各相之间提供了坚固的互连,并将无序TiO周围的SnO纳米颗粒化学包裹成具有纳米级层间距(约1.2纳米)的缓冲钳状连接石墨网络(PGN)系统。随后,与所有16个对照组样品和商业石墨阳极相比,SnO[O]rTiO-PGN显示出优异的锂离子存储性能(在250次循环后,在100 mA g下保持约600 mAh g)。这项工作阐明了增强的赝电容贡献和主要的扩散控制储能动力学。通过电极完整性的可视化图像证据证明了防止体积膨胀的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验