Luo Yongguang, Wang Lingling, Li Qian, Choi Jungsue, Park G Hwan, Zheng Zhiyong, Liu Yang, Wang Hongdan, Lee Hyoyoung
Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea.
BYD Company Ltd., 1301 Shenshan Road, Pingshan District, Shenzhen, 518122, China.
Sci Rep. 2022 Jul 15;12(1):12079. doi: 10.1038/s41598-022-15789-0.
Nanostructured TiO and SnO possess reciprocal energy storage properties, but challenges remain in fully exploiting their complementary merits. Here, this study reports a strategy of chemically suturing metal oxides in a cushioning graphite network (SnO[O]rTiO-PGN) in order to construct an advanced and reliable energy storage material with a unique configuration for energy storage processes. The suggested SnO[O]rTiO-PGN configuration provides sturdy interconnections between phases and chemically wraps the SnO nanoparticles around disordered TiO (SnO[O]rTiO) into a cushioning plier-linked graphite network (PGN) system with nanometer interlayer distance (~ 1.2 nm). Subsequently, the SnO[O]rTiO-PGN reveals superior lithium-ion storage performance compared to all 16 of the control group samples and commercial graphite anode (keeps around 600 mAh g at 100 mA g after 250 cycles). This work clarifies the enhanced pseudo-capacitive contribution and the major diffusion-controlled energy storage kinetics. The validity of preventing volume expansion is demonstrated through the visualized image evidence of electrode integrity.
纳米结构的二氧化钛(TiO)和氧化锡(SnO)具有互补的储能特性,但在充分发挥它们的互补优势方面仍存在挑战。在此,本研究报告了一种在缓冲石墨网络(SnO[O]rTiO-PGN)中化学缝合金属氧化物的策略,以构建一种先进且可靠的储能材料,该材料具有用于储能过程的独特结构。所提出的SnO[O]rTiO-PGN结构在各相之间提供了坚固的互连,并将无序TiO周围的SnO纳米颗粒化学包裹成具有纳米级层间距(约1.2纳米)的缓冲钳状连接石墨网络(PGN)系统。随后,与所有16个对照组样品和商业石墨阳极相比,SnO[O]rTiO-PGN显示出优异的锂离子存储性能(在250次循环后,在100 mA g下保持约600 mAh g)。这项工作阐明了增强的赝电容贡献和主要的扩散控制储能动力学。通过电极完整性的可视化图像证据证明了防止体积膨胀的有效性。