Suppr超能文献

基于偏最小二乘法建立大湖滩涂粪便指示菌的高效模型

Partial least squares for efficient models of fecal indicator bacteria on Great Lakes beaches.

出版信息

J Environ Manage. 2013 Jan 15;114:470-5. doi: 10.1016/j.jenvman.2012.09.033. Epub 2012 Nov 24.

Abstract

At public beaches, it is now common to mitigate the impact of water-borne pathogens by posting a swimmer's advisory when the concentration of fecal indicator bacteria (FIB) exceeds an action threshold. Since culturing the bacteria delays public notification when dangerous conditions exist, regression models are sometimes used to predict the FIB concentration based on readily-available environmental measurements. It is hard to know which environmental parameters are relevant to predicting FIB concentration, and the parameters are usually correlated, which can hurt the predictive power of a regression model. Here the method of partial least squares (PLS) is introduced to automate the regression modeling process. Model selection is reduced to the process of setting a tuning parameter to control the decision threshold that separates predicted exceedances of the standard from predicted non-exceedances. The method is validated by application to four Great Lakes beaches during the summer of 2010. Performance of the PLS models compares favorably to that of the existing state-of-the-art regression models at these four sites.

摘要

在公共海滩,当粪便指示菌(FIB)浓度超过行动阈值时,发布游泳者建议,以减轻水传播病原体的影响已变得很常见。由于培养细菌会延迟危险情况存在时的公共通知,因此有时会使用回归模型根据现成的环境测量值预测 FIB 浓度。很难知道哪些环境参数与预测 FIB 浓度有关,而且这些参数通常是相关的,这会降低回归模型的预测能力。在这里,引入偏最小二乘法(PLS)的方法来自动执行回归建模过程。模型选择简化为设置调整参数的过程,以控制决策阈值,该阈值用于将标准的预测超过值与预测未超过值分开。该方法通过在 2010 年夏季应用于四个大湖海滩进行了验证。在这四个地点,PLS 模型的性能优于现有的最先进的回归模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验