Awiszus F, Dehnhardt J, Funke T
Medizinische Hochschule Hannover, Abteilung Neurophysiologie, Federal Republic of Germany.
J Math Biol. 1990;28(2):177-95. doi: 10.1007/BF00163144.
A qualitative analysis of the Hodgkin-Huxley model (Hodgkin and Huxley 1952), which closely mimics the ionic processes at a real nerve membrane, is performed by means of a singular perturbation theory. This was achieved by introducing a perturbation parameter that, if decreased, "speeds up" the fast variables of the Hodgkin-Huxley equations (membrane potential and sodium activation), whereas it does not affect the slow variables (sodium inactivation and potassium activation). In the most extreme case, if the perturbation parameter is set to zero, the original four-dimensional system "degenerates" to a system with only two differential equations. This degenerate system is easier to analyze and much more intuitive than the original Hodgkin-Huxley equations. It shows, like the original model, an infinite train of action potentials if stimulated by an input current in a suitable range. Additionally, explanations for the increased sensitivity to depolarizing current steps that precedes an action potential can be found by analysis of the degenerate system. Using the theory of Mishchenko and Rozov (1980) it is shown that the degenerate system does not only represent a simplification of the original Hodgkin-Huxley equations but also gives a valid approximation of the original model at least for stimulating currents that are constant within a suitable range.
通过奇异摄动理论对霍奇金 - 赫胥黎模型(霍奇金和赫胥黎,1952年)进行定性分析,该模型紧密模拟了真实神经膜上的离子过程。这是通过引入一个摄动参数来实现的,如果该参数减小,霍奇金 - 赫胥黎方程的快速变量(膜电位和钠激活)会“加速”,而它不影响慢速变量(钠失活和钾激活)。在最极端的情况下,如果将摄动参数设置为零,原来的四维系统“退化”为一个只有两个微分方程的系统。这个退化系统比原始的霍奇金 - 赫胥黎方程更容易分析且更直观。与原始模型一样,如果在合适范围内由输入电流刺激,它会显示出无限的动作电位序列。此外,通过对退化系统的分析可以找到对动作电位之前的去极化电流阶跃敏感性增加的解释。利用米申科和罗佐夫(1980年)的理论表明,退化系统不仅是原始霍奇金 - 赫胥黎方程的简化,而且至少对于在合适范围内恒定的刺激电流,它能给出原始模型的有效近似。