Honkela Antti, Rattray Magnus, Lawrence Neil D
Department of Computer Science, Helsinki Institute for Information Technology HIIT, University of Helsinki, Helsinki, Finland.
Methods Mol Biol. 2013;939:59-67. doi: 10.1007/978-1-62703-107-3_6.
Reverse engineering the gene regulatory network is challenging because the amount of available data is very limited compared to the complexity of the underlying network. We present a technique addressing this problem through focussing on a more limited problem: inferring direct targets of a transcription factor from short expression time series. The method is based on combining Gaussian process priors and ordinary differential equation models allowing inference on limited potentially unevenly sampled data. The method is implemented as an R/Bioconductor package, and it is demonstrated by ranking candidate targets of the p53 tumour suppressor.
逆向工程基因调控网络具有挑战性,因为与潜在网络的复杂性相比,可用数据量非常有限。我们提出了一种通过聚焦于一个更有限的问题来解决此问题的技术:从短时间表达时间序列推断转录因子的直接靶标。该方法基于结合高斯过程先验和常微分方程模型,允许对有限的潜在不均匀采样数据进行推断。该方法以R/Bioconductor包的形式实现,并通过对p53肿瘤抑制因子的候选靶标进行排名来证明。