Suppr超能文献

全基因组关联研究

Genome-wide association studies.

作者信息

Yang Tun-Hsiang, Kon Mark, DeLisi Charles

机构信息

College of Engineering, Boston University, Boston, MA, USA.

出版信息

Methods Mol Biol. 2013;939:233-51. doi: 10.1007/978-1-62703-107-3_15.

Abstract

A host of data on genetic variation from the Human Genome and International HapMap projects, and advances in high-throughput genotyping technologies, have made genome-wide association (GWA) studies technically feasible. GWA studies help in the discovery and quantification of the genetic components of disease risks, many of which have not been unveiled before and have opened a new avenue to understanding disease, treatment, and prevention. This chapter presents an overview of GWA, an important tool for discovering regions of the genome that harbor common genetic variants to confer susceptibility for various diseases or health outcomes in the post-Human Genome Project era. A tutorial on how to conduct a GWA study and some practical challenges specifically related to the GWA design is presented, followed by a detailed GWA case study involving the identification of loci associated with glioma as an example and an illustration of current technologies.

摘要

来自人类基因组计划和国际人类基因组单体型图计划的大量基因变异数据,以及高通量基因分型技术的进步,使得全基因组关联(GWA)研究在技术上成为可能。GWA研究有助于发现和量化疾病风险的遗传成分,其中许多成分此前尚未被揭示,为理解疾病、治疗和预防开辟了新途径。本章概述了GWA,这是在后人类基因组计划时代发现基因组中携带常见基因变异以赋予各种疾病或健康结果易感性区域的重要工具。介绍了如何进行GWA研究的教程以及与GWA设计特别相关的一些实际挑战,随后以识别与胶质瘤相关的基因座为例进行了详细的GWA案例研究,并说明了当前技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验